
Statistics and Data Science: Lecture 3

Roger Barlow
Huddersfield University

Cockcroft Lecture Series

6th June 2022

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 1 / 21

We are very good at telling cats from dogs...

Rapidly, accurately, by using partial or even inaccurate information
Feature-space very far from raw pixel space

Not using flowchart-type algorithms

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 2 / 21

Classification

A very general statistics problem

Physicist: is this event signal or background?

Astronomer: is this blob a star or a galaxy?

Engineer: is this girder reliable or will it fracture?

Doctor: has this patient got flu or Ebola virus?

Banker: will this loan be repaid or defaulted?

Employer: will this applicant be a good employee?

Accelerator physicist: is this bunch going to reach the target or be
lost?

Often many such cases present and need rapid decisions.

Can we imitate the brain’s decision making process?

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 3 / 21

The brain
A very over-simplified view

The brain is made of MANY (around
86,000,000,000) neurons.

Each has MANY inputs (dendrites:
from eyes, ears, etc and from other
neurons)
These are combined to form a value

Each then has MANY outputs (axon:
to hands, tongue, etc and to other
neutrons)

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 4 / 21

The node
Imitating the neuron

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

1/
(1

 +
 e

xp
(-

x)
)

Suppose node i has inputs Uj

Simplest arrangement: output∑
j Uj

Better: output
∑

j wijUj to
weight more important inputs
and allow for positive and
negative factors

Even better: feed this through
some thresholding function:
yi = f (

∑
j wijUj + zi)

Various forms of f used:
Logistic: f (x) = 1/(1 + e−x)
Tanh: f (x) = (ex − e−x)/(ex + e−x)
ReLU: f (x) = xH(x)
Google Swish: f (x) = x/(1 + e−x)

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 5 / 21

The network
Imitating the brain

Multilayer Perceptron or ANN
Nodes arranged in layers
Each node has inputs from all nodes
in previous layer, outputs to all nodes
in next layer, but not to any other
layers
First layer is input - defined by data
size
Final layer is output - ideally 1 for S
and 0 for B (or whatever)
Intermediate layers are ’hidden’
Lends itself to parallelisation of all
nodes within a layer

Easy to code and run - but contains many weights (one for each thin line)
and thresholds. How do you set them to give the right answers?

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 6 / 21

Training
Back-propagation

Let w
(`)
ij be weight to node i in layer ` from node j in previous layer

If some instance has desired output T (0 or 1 for B or S) and network
output U, define badness B = 1

2(U − T)2

Adjust each w
(`)
ij by −α ∂B

∂w
(`)
ij

(thresholds z
(`)
i similar)

α is a ‘learning parameter’, typically 0.1

For final layer: U = f (S) with S =
∑

j w
`
1jU

`−1
j − z

(`)
1 and

∂B

∂w
(`)
ij

= (U − T)f ′(S) ∂S

∂w
(`)
ij

= (U − T)f ′(S)U
(`−1)
j

f ′(S) from simple algebra - for logistic, f ′(S) = f (S)(1 − f (S))
For previous layers, just continue the differentiations following the network
backwards (codes neatly using recursion)
Run over the whole sample, with equal numbers of signal and background.
Do this many times if necessary (epochs), adjusting as you go
Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 7 / 21

Training-testing-validation

Overtraining

Training on the same data set many times eventually leads the network to
recognising individual events. Gives bad results and misleadingly good
performance measure.

Testing

Separate data into training and testing samples (maybe in 80:20 ratio).
Train on the large sample but measure performance on the small sample,
and stop training when that stops improving.

Validation

May need to know the performance (e.g. for absolute measurements, and
for comparing different techniques). 2-stage train-test cycle overoptimistic
as you stop when the test data result looks good. So need 3 samples.

The terms ’validation’ and ’test’ are interchanged in the literature.
Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 8 / 21

Performance
ROC plots - Receiver Operating Characteristics

Typical network output -where
should you place the cut?
0.5?? Where the histograms cross??
You need more information

The actual S and B fractions in
the data (unlikely to be 50:50)

The ‘cost’ of a Type I error
(rejecting an S) and a Type II
error (accepting a B)

Vary cut from 0 to 1 and plot
fractions of B and S accepted
Start at top right X - 100% of both
Increase cut, move left (quickly) and
down (slowly) Y to bottom left Z.
Diagonal is zero discrimination. The
further from it the better.
Used to compare networks, and to
combine with fraction and cost info
to give cut

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 9 / 21

ANNs for Regression
or fitting

Suppose you want to model y = f (x1, x2 . . . xn) but with not preconceived
form for f ?

Feed the xi into a neural network, giving output u, and adjust weights to
minimise 1

2

∑
(yj − uj)

2

This is the same as training for classification except that the y values are
continuous, not just 0 and 1
(May need to scale the final output)

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 10 / 21

Boosted Decision Trees
Another ML technique

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 11 / 21

Support Vector Machines
Yet another ML technique

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 12 / 21

Comparing the 3 methods

All 3 share the problems of overtraining, testing and validation, and their
performance is evaluated using ROC plots

Problem is different so no general ’best buy’ technique, just guidance:

SVMs do well when the signal/background samples can be cleanly
demarcated, even if this is some complicated shape region

For logical (true/false) or classified data, BDTs are a natural choice.
For numeric data, ANNs look more appropriate

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 13 / 21

Multiple outputs

Distinguishing more than two patterns
Classic example: recognising written characters
Output layer with several nodes, one for each pattern.
Training as before
Running: take node with highest value

S and B - two output nodes or 1?

Multinode output can give null result - even highest value is very small
Makes sense for character recognition - might not be a character to
recognise - but not in cases which must be one or the other
’Highest value’ choice does not include prior probability and cost factor

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 14 / 21

Deep Learning
No generally accepted definition

Hot topic - much activity
Lots of funding and effort from tech
companies
Use GPUs and other parallelisation
techniques
Some impressive results

Neural networks with many layers
(Whatever many means. Certainly
more than 2.)

Back-propagation fails due to noise

Various cunning compute-intensive
feature-extracting techniques used

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 15 / 21

CNNs
Convolutional Neural Networks

Typical application in image processing. Is a cat anywhere in this picture?
Convolutional layer

1 Apply ANN to small region in top left corner
2 Scan across and then down, usually 1 pixel at a time, and repeat
3 Train looking for ’features’ present in some but not all regions
4 Do this with several ANNs. Ensure features useful & not duplicated

This is followed by a Pooling layer
1 Split the image into small (typically 2x2) regions
2 Within each region, give maximum(or average) CNN output

Then more C+P layers applied to the outputs of all the ANNs. A first
layer might pick out eyes, ears, and claws. A second might use these to
form larger features like faces and legs. A third would pick out cats and
dogs. As the process proceeds the scale increases, and the fine detail is
incorporated in the features found.
Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 16 / 21

GANs - Generative Adversarial Networks
Creating simulated data

Run a network backward and feed it
random numbers

Outputs of this network have same
structure as original data

Train a second network, with usual
topology, to distinguish between
original data and generated data

Train backward network to reduce
the performance score of the analyser
network

End of training is a network which produces simulated data indistnguishble
from the real thing

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 17 / 21

TensorFlow - preliminary

Has become the standard platform for ML

Installation (do once. Details depends on your system)
pip install tensorflow

Import packages
import tensorflow as tf

from tensorflow.keras import Input

from tensorflow.keras.Models import Sequential

from tensorflow.keras.layers import Dense

import numpy as np

import matlib.pyplot as plt

Keras is an ML package that sits on top of TensorFlow

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 18 / 21

Tensorflow (Set up)

Define a model - suppose 5 - 8 - 4 - 1 topology
model=tf.keras.Sequential()

model.add(tf.keras.Input(shape=(5)))

model.add(tf.keras.layers.Dense(8,activation=’sigmoid’)

model.add(tf.keras.layers.Dense(4,activation=’sigmoid’)

model.add(tf.keras.layers.Dense(1,activation=’sigmoid’)

model.compile(loss=’binary crossentropy’)

Let’s invent some data
smear=3.5. # Adjust this. Maybe use keyboard input?

key=[] # empty

data=np.ndarray((0,7)) # empty but structured

for i in range(5000): # make 10000 values

key=np.append(key,0)

data=np.vstack([data,[1,2,3,4,5,6,7]+np.random.normal(0,smear,7)])

key=np.append(key,1)

data=np.vstack([data,[7,6,5,4,3,2,1]+np.random.normal(0,smear,7)])

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 19 / 21

Tensorflow (Running it)

Try it!
before=model.predict(data)

model.fit(data,key,epochs=10)

after=model.predict(data)

How did it do?!
binning=arange(0,1.01,.02)

plot.hist(before,binning,color=’blue’)

plt.hist(after,binning,color=’orange’)

hbak=plt.hist(after[kk==0],binning)

hsig=plt.hist(after[kk==1],binning)

draw ROC plot

plt.plot(sum(hbak[0])-np.cumsum(hbak[0]),

sum(hsig[0])-np.cumsum(hsig[0]))

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 20 / 21

Exercise

1 Form groups as usual. All in python this week (sorry!)
2 Download data files

http://barlow.web.cern.ch/barlow/good.dat and bad.dat.
They are 5000 samples of 15 numbers representing some monitor
signal. Plot a few of them to see what they look like

3 Use TensorFlow to discriminate between good and bad signals.
Remember to separate training and testing. Try different topologies
and different activation functions and other options. Draw the ROC
plot for your best result (and maybe others)

4 In supposedly real life, good signals outnumber bad signals by a factor
of 2000. A bad signal results in beam loss and sprays radiation
everywhere doing an estimated £350 of damage. You can abort the
beam, which loses a good beam shot which is worth £2 to the users.
Where should you put the cut on the network output?

5 Prepare some plots and slides, and come back at 2 pm and present
your results in a short talk.

Roger Barlow (Cockcroft Lectures) Statistics and Data Science 3 6th June 2022 21 / 21

