C³ The Cool Copper Collider: An Advanced Concept for a Future Higgs Factory

Emilio Nanni RAL Particle Physics Dept. Seminar 4/20/2022

Acknowledgements

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

> SLAC-PUB-17661 April 12, 2022

Strategy for Understanding the Higgs Physics: The Cool Copper Collider

Editors:

Sridhara Dasu⁴⁴, Emilio A. Nanni³⁵, Michael E. Peskin³⁶, Caterina Vernieri³⁶

Contributors:

TIM BARKLOW³⁶, RAINER BARTOLDUS³⁶, PUSHPALATHA C. BHAT¹⁴, KEVIN BLACK⁴⁴, JIM BRAU²⁹, MARTIN BREIDENBACH³⁶, NATHANIEL CRAIG⁷, DMITRI DENISOV³, LINDSEY GRAY¹⁴, PHILIP C. HARRIS²⁴, MICHAEL KAGAN³⁶, ZHEN LIU²³, PATRICK MEADE³⁶, NATHAN MAJERNIK⁶, SERGEI NAGAITSEV^{†14}, ISOBEL OJALVO³², CHRISTOPH PAUS²⁴, CARL SCHNOEDER¹⁷, ARIEL G. SCHWARTZMAN³⁶, JAN STRUBE^{29,30}, SU DONG³⁶, SAMI TANAWI³⁶, LIAN-TAO WANG¹⁰, ANDY WHITE³⁸, GRAHAM W. WILSON²⁶

Endorsers:

KAUSTUBH AGASHE²¹, DANIEL AKERIB³⁶, ARAM APYAN², JEAN-FRANÇOIS ARGUIN²⁵, CHARLES BALTAY⁴⁵, BARRY BARISH⁴⁹, WILLIAM BARLETTA²⁴, MATTHEW BASSO⁴¹, LOTHAR BAUERDICK¹⁴, SERGEY BELOMESTNYKH^{41,37}, KENNETH BLOOM²⁷, TULIKA BOSE⁴⁴, QUENTIN BUAT⁴³, YUNHAI CAI³⁶, ANADI CANEPA¹⁴, MARIO CARDOSO³⁶, VIVIANA CAVALIERE³, SANHA CHEONG^{†36}, RAYMOND T. CO²³, JOHN CONWAY⁵, PALLABI DAS³², CHRIS DAMERLI³⁵, SALLY DAWSON³, ANKUR DHAR³⁶.

JOHN CONWAY⁹, PALLABI DAS²⁵, CHRIS DAMERELL³⁵, SALLY DAWSON³, ANKUR DHAR³⁶, F FRANZ-JOSEF DECKER³⁶, MARCEL W. DEMARTEAU²⁵, LANCE DIXON³⁶, VALERY DOLGASHEV³⁶, ROBIN ERBACHER⁵, ERIC ESAREY¹⁷, PIETER EVERAERTS⁴⁴, ANNIKA GABRIEL³⁶, LIXIN GE³⁶, SPENCER GESSNER³⁶, LAWRENCE GIBBONS¹², BHAWNA GOMERI⁵, JULIA GONSKI¹¹, STEFANIA GORI⁸, PAUL GRANNIS³⁶, HOWARD E. HABER⁸, NICOLE M. HARTMAN¹³⁶, JEROME HASTINGS³⁶, MATT HERNDON⁴⁴, NIGEL HESSEY⁴², DAVID HITLIN⁹, MICHAEL HOGANON³⁶, ANSON HOOK²¹, HAOYI (KENNY) JIA⁴⁴, KETINO KAADZE²⁰, MARK KEMP³⁶, CHRISTOPHER J. KENNEY³⁶, ARKADIY KLEBANER¹⁴, CHARIS KLEIO KORAKA⁴⁴, ZENGHAI LI³⁶, MATTHIAS LIEPE¹², MIAOYUAN LU³³, SHIVANI LOMTE⁴⁴, IAN LOW^{†1}, YANG MA³¹, THOMAS MARKIEWICZ³⁶, PETRA MERKEL¹⁴, BERNHARD MISTLBERGER³⁶, ABDOLLAH MOHAMMADI⁴⁴, DAVID MONTANARI¹⁴, CHRISTOPHER NANTISTA³⁶, MEENAKSHI NARAIN⁴,

TIMOTHY NELSON³⁶, Cho-KUEN NG³⁶, ALEX NGUYEN³⁶, JASON NIELSEN⁸, MOHAMED A. K. OTIMAN³⁶, MARC OSHERSON³³, KATHERINE PACHAL⁴², SIMONE PAGAN GRISO¹⁷, DENNIS PALMER³⁶, EWAN PATERSON³⁶, RITCHIE PATTERSON¹², JANNICKE PEARKESI³⁶, NAN PHINNEY³⁶, LUISE POLEY⁴², CHRIS POTTER²⁹, STEFANO PROFUMO¹⁸, THOMAS G. RIZZO³⁶, RIVER ROBLES³⁶, AARON ROODMAN³⁶ JAMES ROSENZWEIG⁶, MURTAZA SAFDARI¹³⁶, PIERRE SAVARD^{41,42}, ALEXANDER SAVIN⁴⁴, BRUCE A. SCHUMM¹⁸, ROY SCHWITTERS³⁹, VARUN SHARMA⁴⁴, VLADIMIR SHILTSEV¹⁴, EVGENYA SIMAKOV¹⁹, JOHN SMEDLEY¹⁹, EMMA SINVELY³⁶, BRUNG SPATARO¹⁶, MARCEL STANITZKI¹³, GIORDON STARK¹⁸, BERND STELZER¹⁴², OLIVER STELZER-CHILTON⁴², MAXIMILIAN SWIATLOWSKI⁴², RICHARD TEMKIN²⁴,

JULIA THOM¹², ALESSANDRO TRICOLI³, CARL VUOSALO⁴⁴, BRANDON WEATHERFORD³⁶, GLEN WHITE³⁶, STEPHANE WILLOCQ²², MONIKA YADAV^{6,18}, VYACHESLAV YAKOVLEV¹⁴, HITOSHI YAMAMOTO⁴⁰ CHARLES YOUNG³⁶, LILING XIAO³⁶, ZIJUN XU³⁶, JINLONG ZHANG¹, ZHI ZHENG³⁶ Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

> SLAC-PUB-17660 April 12, 2022

 C^3 Demonstration Research and Development Plan

Editors:

EMILIO A. NANNI⁶, MARTIN BREIDENBACH⁶, CATERINA VERNIERI⁶, SERGEY BELOMESTNYKH^{2,7}, PUSHPALATHA BHAT² AND SERGEI NAGAITSEV^{2,10}

Authors:

MEI BAI⁶, TIM BARKLOW⁶, ANKUR DHAR⁶, RAM C. DHULEY², CHRIS DOSS⁹, JOSEPH DURIS⁶, AURALEE EDELEN⁶, CLAUDIO EMMA⁶, JOSEF FRISCH⁶, ANNIKA GABRIEL⁶, SPENCER GESSNER⁶, CARSTEN HAST⁶, ARKADIY KLEBANER², ANATOLY K. KRASNYKH⁶, JOHN LEWELLEN⁶, MATTHIAS LIEPE¹, MICHAEL LITOS⁹, JARED MAXSON¹, DAVID MONTANARI², PIETRO MUSUMECI⁸, CHO-KUEN NG⁶, MOHAMED A. K. OTHMAN⁶, MARCO ORIUNNO⁶, DENNIS PALMER⁶, J. RITCHIE PATTERSON¹, MICHAEL E. PESKIN⁶, THOMAS J. PETERSON⁶, JI QIANG³, JAMES ROSENZWEIG⁸, VLADIMIR SHILTSEV, EVGENYA SIMAKOV⁴, BRUNO SPATARO⁵, EMMA SNIVELN⁶, SAMI TANTAWI⁶, BRANDON WEATHERFORD⁶, AND GLEN WHITE⁶

More Details Here (Follow, Endorse, Collaborate):

¹Cornell University

²Fermi National Accelerator Laboratory
 ³Lawrence Berkeley National Laboratory
 ⁴Los Alamos National Laboratory
 ⁵National Laboratory of Frascati, INFN-LNF
 ⁶SLAC National Accelerator Laboratory, Stanford University
 ⁷Stony Brook University
 ⁸University of California, Los Angeles
 ⁹University of Chicago

Additional Contributors

Mitchell Schneider Charlotte Whener Gordon Bowden Andy Haase Julian Merrick Bob Conley Radiabeam Cici Hanna

> SLAC-PUB-17629 November 1, 2021

 C^3 : A "Cool" Route to the Higgs Boson and Beyond

Mei Bai, Tim Barklow, Rainer Bartoldus, Martin Breidenbach^{*}, Philippe Grenier, Zhirong Huang, Michael Kagan, Zenghai Li, Thomas W. Markiewicz, Emilio A. Nanni^{*}, Mamdouh Nasr, Cho-Kuen Ng, Marco Oriunno, Michael E. Peskin^{*}, Thomas G. Rizzo, Ariel G. Schwartzman, Dong Su, Sami Tantawi, Caterina Vernieri^{*}, Glen White, Charles C. Young

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025

John Lewellen, Evgenya Simakov

Los Alamos National Laboratory, Los Alamos, NM 87545

JAMES ROSENZWEIG

Department of Physics and Astronomy, University of California, Los Angeles, CA 90095

Bruno Spataro

INFN-LNF, Frascati, Rome 00044, Italy

VLADIMIR SHILTSEV

RAL Particle Physics Dept. Seminattps://indico.slac.stanford.edu/event/7155/

Fermi National Accelerator Laboratory, Batavia IL 60510-5011

What's Next for the Energy Frontier?

Wish list beyond HL-LHC:

1. Establish Yukawa couplings to light flavor \Rightarrow needs precision

2. Establish self-coupling \Rightarrow needs high energy

Why e⁺e⁻?

Initial state well defined & polarization \Rightarrow High-precision measurements Higgs bosons appear in 1 in 100 events \Rightarrow Clean environment and trigger-less readout

Higgs Production at e⁺e⁻

ZH is dominant at **250 GeV** Above **500 GeV**

- Hvv dominates
- ttH opens up
- HH production accessible with ZHH

Linear vs. Circular

Linear e⁺e⁻ colliders: ILC, C³, CLIC

- Reach higher energies (~TeV), and can use polarized beams
- Relatively low radiation
- Collisions in bunch trains

Circular e⁺e⁻ colliders: FCC-ee, CEPC

- Highest luminosity collider at Z/WW/ZH
- limited by synchrotron radiation above 350 – 400 GeV
- Beam continues to circulate after collision

Various Proposals

CEPC 240 GeV

> FCC-ee 240/365 GeV

COOL COPPER COLLIDER

250/550 GeV ... > TeV

CLIC 380/1000/3000 GeV

ILC 250/500 GeV

SLAC

Why 550 GeV?

We propose **250 GeV** with a relatively inexpensive upgrade to **550 GeV**

- An orthogonal dataset at 550 GeV to cross-check a deviation from the SM predictions observed at 250 GeV
- From 500 to 550 GeV a factor
 2 improvement to the
 top-Yukawa coupling
- O(20%) precision on the Higgs self-coupling would allow to exclude/demonstrate at 5σ models of electroweak baryogenesis

Collider	HL-LHC	C^3 /ILC 250 GeV	C^3 /ILC 500 GeV
Luminosity	3 ab^{-1} in 10 yrs	2 ab^{-1} in 10 yrs	$+ 4 \text{ ab}^{-1} \text{ in } 10 \text{ yrs}$
Polarization	-	$\mathcal{P}_{e^+} = 30\%~(0\%)$	$\mathcal{P}_{e^+} = 30\%~(0\%)$
g_{HZZ} (%)	3.2	0.38(0.40)	0.20 (0.21)
g_{HWW} (%)	2.9	0.38(0.40)	$0.20 \ (0.20)$
g_{Hbb} (%)	4.9	$0.80 \ (0.85)$	0.43 (0.44)
g_{Hcc} (%)	-	1.8(1.8)	1.1 (1.1)
g_{Hgg} (%)	2.3	1.6(1.7)	0.92(0.93)
$g_{H\tau\tau}$ (%)	3.1	0.95(1.0)	$0.64 \ (0.65)$
$g_{H\mu\mu}$ (%)	3.1	4.0(4.0)	3.8(3.8)
$g_{H\gamma\gamma}$ (%)	3.3	1.1 (1.1)	0.97 (0.97)
$g_{HZ\gamma}$ (%)	11.	8.9(8.9)	6.5(6.8)
g_{Htt} (%)	3.5	—	$3.0 (3.0)^*$
g_{HHH} (%)	50	49 (49)	22(22)
Γ_H (%)	5	1.3(1.4)	$0.70 \ (0.70)$

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

A novel route to a linear e⁺e⁻ collider...

Breakthrough in the Performance of RF Accelerators

RF power coupled to each cell – no on-axis coupling Full system design requires modern virtual prototyping

Electric field magnitude produced when RF manifold feeds alternating cells equally

Optimization of cell for efficiency (shunt impedance)

- $R_s = G^2/P \text{ [M}\Omega/\text{m]}$
- Control peak surface electric and magnetic fields Key to high gradient operation

AC RAL Particle Physics Dept. Seminar

Tantawi, Sami, et al. PRAB 23.9 (2020): 092001.

Cryo-Copper: Enabling Efficient High-Gradient Operation

Cryogenic temperature elevates performance in gradient

- Material strength is key factor
- Impact of high fields for a high brightness injector may eliminate need for one damping ring

Operation at 77 K with liquid nitrogen is simple and practical

- Large-scale production, large heat capacity, simple handling
- Small impact on electrical efficiency

$$\begin{aligned} \eta_{cp} &= LN \ Cryoplant \\ \eta_{cs} &= Cryogenic \ Structure \\ \eta_k &= RF \ Source \end{aligned}$$

$$\frac{\eta_{cs}}{\eta_k}\eta_{cp}\approx \frac{2.5}{0.5}[0.15]\approx 0.75$$

AC RAL Particle Physics Dept. Seminar

Cahill, A. D., et al. *PRAB* 21.10 (2018): 102002.

C³ is based on a new rf technology

• Dramatically improving efficiency and breakdown rate

Distributed power to each cavity from a common RF manifold

Operation at cryogenic temperatures (LN₂ ~80 K)

Robust operations at high gradient: 120 MeV/m Scalable to multi-TeV operation

High Gradient Operation at 150 MV/m

C³ Prototype One Meter Structure

High power Test at Radiabeam

Requirements for a High Energy e⁺e⁻ Linear Collider

Using established collider designs to inform initial parameters

Quantifying impact of wakes requires detailed studies

- Most important terms aperture, bunch charge (and their scaling with frequency)
 Target initial stage design at 250 GeV CoM
- 2 MW single beam power

NLC, ZDR Tbl. 1.3,8.3

8 km footprint for 250/550 GeV CoM \Rightarrow 70/120 MeV/m

7 km footprint at 155 MeV/m for 550 GeV CoM – present Fermilab site Large portions of accelerator complex are compatible between LC technologies

- Beam delivery and IP modified from ILC (1.5 km for 550 GeV CoM)
- Damping rings and injectors to be optimized with CLIC as baseline
- Costing studies use LC estimates as inputs

C³ - Investigation of Beam Delivery (Adapted from ILC/NLC)

Ε

C³ - 8 km Footprint for 250/550 GeV

Collider	NLC	CLIC	ILC	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
Gradient [MeV/m]	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Length [km]	23.8	11.4	20.5(31)	8	8
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Site Power [MW]	121	168	125	$\sim \! 150$	~ 175
Design Maturity	CDR	CDR	TDR	pre-CDR	pre-CDR

Beam Format and Detector Design Requirements

ILC timing structure: Fraction of a percent duty cycle

- **Power pulsing possible**, significantly reduce heat load
 - Factor of 50-100 power saving for FE analog power
- Tracking detectors **don't need active cooling**
 - Significantly reduction for the material budget
- **Triggerless readout** is the baseline
- C³ time structure is compatible with SiD-like detector overall design and ongoing optimizations

ILC timing structure

1 ms long bunch trains at 5 Hz 2820 bunches per train 308ns spacing

C³ timing structure

Collider

 σ_z

 β_x

 β_y

 ϵ_x

 ϵ_y

N bunches

Repetition rate

Crossing angle

Crab angle

CCC

 $100 \ \mu m$

13 mm

0.1 mm

900 nm/rad

20 nm/rad

133

120 Hz

0.020

0.020/2

ILC

 $300 \ \mu m$

8.0 mm

0.41 mm

500 nm/rad

35 nm/rad

1312

5 Hz

0.014

0.014/2

Technically limited timeline following community engagement through the full Snowmass process to define the parameters of the C³ proposal

	2019-	2024	202	25-20)34		203	35-20)44		204	15-20)54		205	55-20	064	
Accelerator										2				>				525
Demo proposal																		
Demo test																		
CDR preparation																		
TDR preparation																		
Industrialization																		
TDR review																		
Construction																		
Commissioning																		
$2 \text{ ab}^{-1} @ 250 \text{ GeV}$																		
RF Upgrade																		
$4 \text{ ab}^{-1} @ 550 \text{ GeV}$																		
Multi-TeV Upg.																		

HI-IHC

Ongoing Prototype Structure Development

Incorporate the two key technical advances: Distributed Coupling and Cryo-Copper RF

Main linac utilizes meter-scale accelerating structures, technology demonstration underway Implement optimized rf cavity designs to control peak surface fields

One meter (40-cell) C-band design with reduce peak E and H-field

SLAC

Scaling fabrication techniques in length and including controlled gap

LANL Test of single cell SLAC C-band structure

Cryomodule Design and Alignment

Up to 1 GeV of acceleration per 9 m cryomodule; ~90% fill factor with eight 1 m structures

Main linac will require 5 micron structure alignment Combination of mechanical and beam based alignment Vacuum Insulated Pre-alignment warm, cold alignment by wire, followed by beam based Cryostat **RF** Input Mechanical motor runs warm or cold – no motion during power failure Piezo for active alignment Quadrupole Accelerating Support Raft Investigating support and assembly design Structure Wire Aligner Cryomodule (~9 m) Cryomodule **RF** Waveguide Accelerating Structure (~1 m) Electron **Cryomodule Cross Section** Beam Out **Tunable Permanent Magnet Electron Beam In**

Tunnel Layout for Main Linac 250/550 GeV CoM

Need to optimize tunnel layout – first study looked at 9.5 m inner diameter in order to match ILC costing model

Must minimize diameter to reduce cost and construction time

Surface site (cut/cover) provides interesting alternative – concerns with length of site for future upgrade

Cryomodule Design Scalable from 250 GeV to multi-TeV

X-band structure demonstrated full average power over short length (0.25 m) Cryomodule design developed for cryoplant layout to cool 1.2 MW/km thermal load at 77K

Shared Nitrogen Supply and Return

Main Linac Power Consumption

250 GeV CoM **Temperature (K)** 77 Luminosity -Beam Loading (%) 45 1.3×10^{34} Gradient (MeV/m) 70 Flat Top Pulse Length (µs) 0.7 Cryogenic Load (MW) 9 Main Linac Electrical Load 100 (MW) Site Power (MW) ~150 Trains repeat at 120 Hz **Pulse Format** RF envelope 133 1 nC bunches spaced by 700 ns 30 RF periods (5.25 ns)

Parameter	Units	Value
Reliquification Plant Cost	M\$/MW	18
Single Beam Power (125 GeV linac)	MW	2
Total Beam Power	MW	4
Total RF Power	MW	18
Heat Load at Cryogenic Temperature	MW	9
Electrical Power for RF	MW	40
Electrical Power For Cryo-Cooler	MW	60
Accelerator Complex Power	MW	~50
Site Power	MW	~150

RF Source R&D Over the Timescale of the Next P5

RF source cost is the key driver for gradient and cost

Significant savings when items procured at scale of LC

Need to focus R&D on reducing source cost to drive economic argument for high gradient Gradient/Cost Scaling vs. RE Source Cost for Main Linac

Understand the Impact on Advanced Collider Concept Enabled by the Goals Defined in the DOE GARD RF Decadal Roadmap

RF Sources Available vs. Near Term Industrial Efforts

RF sources and modulators capable of powering CCC-250 commercially available

Plan to leverage significant developments in performance (HEIKA) of high power rf sources – requires industrialization

New 50 MW peak power C-band klystron installed in September 2019

BVEI X-band 50 MW 57%

High Efficiency Klystrons

Please See I. Syratchev's Talk for Many Great Examples from Designs to Prototypes

- Re-used solenoid.
- Increased life time (> factor 2)
- Reduced modulator power (~ factor 2)
- Increased power gain (10 dB)
- Reduced solenoidal field

Prototype fabrication is under negotiation within CPI/INFN/CERN collaboration.

I. Syratchev, CLIC PM #41, 13.12.2021

RF circuit length, m

0.316

0.316

VKX-8311A

https://indico.cern.ch/event/110154 8/contributions/4635964/attachment s/2363439/4034986/CLIC PM 13 12 2021.pdf

Gaussian Detuning Provides Required 1st Band Dipole Suppression for Subsequent Bunch, Damping Also Needed

Dipole mode wakefields immediate concern for bunch train 4σ Gaussian detuning of 80 cells for dipole mode (1st band) at f_c =9.5 GHz, w/ $\Delta f/f_c$ =5.6% First subsequent bunch s = 1m, full train ~75 m in length

• Damping needed to suppress re-coherence

Distributed Coupling Structures Provide Natural Path to Implement Detuning and Damping of Higher Order Modes

Individual cell feeds necessitate adoption of split-block assembly Perturbation due to joint does not couple to accelerating mode Exploring gaps in quadrature to damp higher order mode

Detuned Cavity Designs

Quadrant Structure

Abe et al., PASJ, 2017, WEP039

27

Implementation of Slot Damping

Need to extend to 40 GHz / Optimize coupling / Modes below 10⁴ V/pC/mm/m NiCr coated damping slots in development

Damping Slot Prototype

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Outlook

C³ Demonstration R&D Plan

C³ demonstration R&D needed to advance technology beyond CDR level Minimum requirement for Demonstration R&D Plan:

- Demonstrate operation of fully engineered and operational cryomodule
 - Simultaneous operations of min. 3 cryomodules
- Demonstrate operation during cryogenic flow equivalent to main linac at full liquid/gas flow rate
- Operation with a multi-bunch photo injector high charges bunches to induce wakes, tunable delay witness bunch to measure wakes
- Demonstrate full operational gradient 120 MeV/m (and higher > 155 MeV/m) w/ single bunch
 - Must understand margins for 120 targeting power for (155 + margin) 170 MeV/m
 - 18X 50 MW C-band sources off the shelf units
- Fully damped-detuned accelerating structure
- Work with industry to develop C-band source unit optimized for installation with main linac

This demonstration directly benefits development of compact FELs, beam dynamics, high brightness guns, *etc.* The other elements needed for a linear collider - the sources, damping rings, and beam delivery system – more advanced from the ILC and CLIC – need C³ specific design

• Our current baseline uses these directly; will look for further cost-optimizations for of C³

C³ Demonstration R&D Plan timeline

High Energy Physics: Caterina Vernieri <u>caterina@slac.stanford.edu</u> Accelerator Science & Engineering: Emilio Nanni <u>nanni@slac.stanford.edu</u> C³ R&D, System Design and Project Planning are ongoing

- Early career scientists should help drive the agenda for an experiment they will build/use
- Many opportunities for other institutes to collaborate on:
 - beam dynamics, vibrations and alignment, cryogenics, rf engineering, controls, detector optimization, background studies, etc.

The Complete C³ Demonstrator

Conclusion

Next C³ Workshop in Planning - May 17-18th @ Fermilab (<u>https://forms.gle/QoepjKu1j9AuDf6j8</u>)

 \mbox{C}^3 can provide a rapid route to precision Higgs physics with a compact 8 km footprint

- Higgs physics run by 2040
- Possibly, a US-hosted facility

C³ time structure is compatible with SiD-like detector overall design and ongoing optimizations.

C³ can be quickly be upgraded to 550 GeV

 C^3 can be extended to a 3 TeV e+e- collider with capabilities similar to CLIC

With new ideas, the C³ lab can provide physics at 10 TeV and beyond May be possible to do physics at an intermediate stage in the construction at 91 GeV

We do not consider this a part of our baseline, but we mention the possibility in case there is community interest for a Giga-Z (2 yrs) program
 More Details Here (Follow, Endorse, Collaborate):

SLAC RAL Particle Physics Dept. Shttps://indico.slac.stanford.edu/event/7155/

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Questions?

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Backup

RF Power Requirements

70 MeV/m 250 ns Flattop (extendible to 700 ns) ~1 microsecond rf pulse, ~30 MW/m Conservative 2.3X enhancement from cryo

No pulse compression
 Ramp power to reduce reflected power
 Flip phase at output to reduce thermals

One 65 MW klystron every two meters -> Matches CLIC-k rf module power

RAL Particle Physics Dept. Seminar

200

180

160

140

60

40

20

- Input Power

Reflected Power - Beam Off

RF Power

200

500

1000

400 600

Gradient

Full Parameters

Collider	NLC[28]	CLIC[29]	ILC ⁵	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
$\sigma_z \; [\mu { m m}]$	150	70	300	100	100
$eta_x \; [ext{mm}]$	10	8.0	8.0	12	12
$\beta_y [\mathrm{mm}]$	0.2	0.1	0.41	0.12	0.12
$\epsilon_x \text{ [nm-rad]}$	4000	900	500	900	900
$\epsilon_y \text{ [nm-rad]}$	110	20	35	20	20
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Beam Power [MW]	5.5	2.8	2.63	2	2.45
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Crab Angle	0.020/2	0.0165/2	0.014/2	0.014/2	0.014/2
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
	(w/ IP dil.)	$(\max is 4)$			
Gradient $[MeV/m]$	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Shunt Impedance $[M\Omega/m]$	98	95		300	300
Effective Shunt Impedance $[M\Omega/m]$	50	39		300	300
Site Power [MW]	121	168	125	$\sim \! 150$	~ 175
Length [km]	23.8	11.4	20.5(31)	8	8
L^{*} [m]	2	6	4.1	4.3	4.3

Optimized Cavity Geometries for Standing Wave Linac

Small aperture for reduced phase achieves exceptional Rs Cryogenic operation: Increased Rs, reduced pulse heating

Frequency	a/λ	Phase Adv.	Rs (MΩ/m) 300K	Rs (MΩ/m) – 77K
C-band (5.712 GHz)	0.05	Π	121	272
C-band (5.712 GHz)	0.05	2π/3	133	300
X-band (11.424 GHz)	0.1	Π	133	300

State of the Art Tunnel Construction

Workshop!

Santa Lucia 8 km Tunnel – 16 m diameter boring machine – 3 yrs Pre-fab concrete lining and service tunnel during excavation

Drop-In Service Tunnel

Tunnel Lining

Cut and Cover Construction

Workshop!

At 8 km surface site becomes a possibility – limited locations could implement an energy upgrade

Could have significant cost / construction timeline impact Was explored in the context of ILC

