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What We Learned in the Previous Lecture

In the previous lecture, we saw how to describe the transverse

dynamics in a simple straight beamline, consisting of drift

spaces and quadrupole magnets, using the Twiss parameters.

The Twiss parameters give the shape of an ellipse that is

mapped out in phase space by plotting the transverse

coordinate and momentum of a particle at a given point in a

cell in a periodic beamline.

The Twiss parameters are functions of position, and vary

through the periodic cell, but have the same periodicity as the

beamline. It follows from Liouville’s theorem that the area of

the phase space ellipse is an invariant along the beamline; the

area divided by 2π is called the action of the particle, and is a

measure of the amplitude of the transverse oscillations.
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What We Learned in the Previous Lecture

The action Jx of a particle can be used as a dynamical variable:

it is the conjugate momentum to a coordinate variable φx

called the angle. The action-angle variables (φx, Jx) are related

to the cartesian variables (x, px) by:

x =
√

2βxJx cosφx (1)

px = −
√

2Jx
βx

(sinφx + αx cosφx) (2)

where βx and αx are Twiss parameters.

The linear dynamics of a particle are particularly easy to

describe in terms of action-angle variables: the action is

constant, and the angle increases as:

dφx

ds
=

1

βx
(3)
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Course Outline

Part II (Lectures 6 – 10): Description of beam dynamics using

optical lattice functions.

6. Linear optics in periodic, uncoupled beamlines

7. Including longitudinal dynamics

8. Bunches of many particles

9. Coupled optics

10. Effects of linear imperfections
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What We Shall Learn in this Lecture

In the previous lecture, we did not give much attention to the

longitudinal motion of a particle. This is because in a straight

beamline, without RF cavities, not much happens: the particle

simply “drifts”, with the longitudinal coordinate increasing or

decreasing uniformly, at a rate proportional to the energy

deviation of the particle.

In this lecture, we shall consider what happens to the

longitudinal dynamics when we include bends and RF cavities in

the beamline.

We shall introduce the important concepts of momentum

compaction, phase slip, and phase stability. Finally, we shall see

that the longitudinal dynamics can be described using Twiss

parameters and action-angle variables in exactly the same way

as the transverse dynamics.
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Reminder: Transfer Matrix for a FODO Cell

Recall from the previous lecture the transfer matrix for a

FODO cell:

R =



1− L2

2f 2
0

L
f0

(L+ 2f0) 0 0 0 0
L

4f 3
0

(L− 2f0) 1− L2

2f 2
0

0 0 0 0

0 0 1− L2

2f 2
0

−L
f0

(L− 2f0) 0 0

0 0 − L
4f 3

0

(L+ 2f0) 1− L2

2f 2
0

0 0

0 0 0 0 1 2L
β2

0γ
2
0

0 0 0 0 0 1


(4)

If we choose the drift length L and the qudarupole focal length

f0 properly, particles oscillate in the transverse planes as they

travel along the beamline. However, there are no longitudinal

oscillations.
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Longitudinal Dynamics in a FODO Beamline

The linearised longitudinal equations of motion in a straight

beamline are:
dδ

ds
= 0

dz

ds
=

δ

β2
0γ

2
0

(5)

Let us consider first how these equations are affected if we

introduce bends (dipole magnets) into the beamline...
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Reminder: Transfer Matrix for a Dipole

Recall the transfer matrix for a dipole magnet:

R =



cosωL sinωL
ω 0 0 0 1−cosωL

ωβ0

−ω sinωL cosωL 0 0 0 sinωL
β0

0 0 1 L 0 0
0 0 0 1 0 0

−sinωL
β0

−1−cosωL
ωβ0

0 0 1 L
γ2

0β
2
0
− ωL−sinωL

ωβ2
0

0 0 0 0 0 1


(6)

where L is the length of the dipole, and ω = k0 is the dipole

field B0 normalised by the reference momentum:

k0 =
q

P0
B0 (7)

Note the non-zero R16 and R26 terms in this transfer matrix:

these terms give the change in the horizontal coordinate and

momentum with respect to changes in the energy deviation.

They describe the “dispersion” introduced by the dipole. We

can generalise the idea of dispersion to a dispersion function.
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The Dispersion Function

Consider a periodic beamline consisting of drifts, normal

quadrupoles, and dipoles bending in the horizontal plane. In

general, the transfer matrix for one periodic cell takes the form:

R =



• • 0 0 0 •
• • 0 0 0 •
0 0 • • 0 0
0 0 • • 0 0
• • 0 0 1 •
0 0 0 0 0 1


(8)

where • represents some non-zero value. The vertical motion is

decoupled from the horizontal and the longitudinal motion, but

the horizontal motion and the longitudinal motion are coupled

to each other. However, the horizontal motion has no

dependence on the longitudinal coordinate z: this is because, in

the absence of RF cavities, the fields have no time dependence.
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The Dispersion Function

Since the horizontal motion is completely decoupled from the

vertical motion and from the longitudinal coordinate z, the

horizontal motion can be completely described in terms of a

3× 3 matrix as follows: x
px
δ


s=s0+C0

=

 R11 R12 R16
R21 R22 R26

0 0 1

 ·
 x
px
δ


s=s0

(9)

where C0 is the length of a cell, measured along the reference

trajectory.

Hamiltonian Dynamics, Lecture 7 9 Longitudinal Dynamics



The Dispersion Function

Consider a particle moving through the lattice with some

energy deviation δ. There exists a trajectory that the particle

can follow, that has the same periodicity as the lattice. We can

show the existence of this trajectory by actually calculating

what it is.

Let us write the periodic trajectory (x̃, p̃x). The periodicity

condition can be written: x̃
p̃x
δ


s=s0+C0

=

 x̃
p̃x
δ


s=s0

(10)

We then find from equations (9) and (10) that the periodic

trajectory is given by:(
x̃
p̃x

)
=

(
1−R11 −R12
−R21 1−R22

)−1

·
(
R16
R26

)
δ (11)
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The Dispersion Function

The dispersion function ηx, (and its “conjugate”, ηpx) is

defined as the change in the periodic trajectory with respect to

the energy deviation, i.e.(
ηx
ηpx

)
=

∂

∂δ

(
x̃
p̃x

)
(12)

From equation (11), we can calculate the dispersion in a

periodic beamline from the transfer matrix R for one periodic

cell: (
ηx
ηpx

)
=

(
1−R11 −R12
−R21 1−R22

)−1

·
(
R16
R26

)
(13)

If the matrix inversion appearing in equation (13) exists, then

the dispersion function also exists.

Strictly speaking, equation (13) is only valid if there are no RF

cavities in the ring, and the particle energy is constant.
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Evolution of the Dispersion Function Along a Beamline

Since we defined the dispersion as the trajectory followed by a

particle with some non-zero energy deviation, we can evolve the

dispersion function simply using the transfer matrices. In drift

spaces and normal quadrupoles, the dispersion transforms the

same way as the horizontal trajectory. In bending magnets,

there are additional (“zeroth-order”) terms to account for the

dispersive effects of dipoles.

In a beamline consisting of drift spaces, normal quadrupoles,

and bending magnets in the horizontal plane, we can write:(
ηx
ηpx

)
s1

=

(
R11 R12
R21 R22

)
·
(
ηx
ηpx

)
s0

+

(
R16
R26

)
(14)

where R is the transfer matrix from point s0 in the beamline to

point s1.
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Dispersion Function in a FODO Lattice

Black line = βx; red line = βy; green line = ηx.
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Longitudinal Dynamics in a Dipole

Now consider just the longitudinal part of the transfer matrix

for a single dipole. If the initial horizontal and vertical

coordinates and momenta are zero, then the linear map is:

∆δ = 0 (15)

∆z =

(
L

β2
0γ

2
0
−
ωL− sinωL

ωβ2
0

)
δ (16)

Note that if
L

β2
0γ

2
0
<
ωL− sinωL

ωβ2
0

(17)

then a particle with energy higher than the reference energy

slips back with respect to the reference particle; i.e. higher

energy particles effectively travel more slowly. This is a

consequence of the dispersion, the fact that higher energy

particles take a longer path through the dipole than lower

energy particles.
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Longitudinal Dynamics in a Dipole

A particle with positive energy deviation (δ > 0) follows a

longer trajectory in the dipole than a particle on the reference

trajectory. If the particles enter with the same z, and the

energy is sufficiently large (both particles travel close to the

speed of light), the higher energy particle falls behind the

particle with the reference energy.
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Longitudinal Dynamics in a Storage Ring

Let us extend the effects of dispersion on the path length to a

complete storage ring. We don’t need to know the details of

the design of the storage ring; we shall carry out a general

analysis. We assume that there are no RF cavities in the ring,

so the energy deviation δ is constant.

Let C be the path length for one complete turn for a particle

that has zero horizontal or vertical action. In other words, the

particle performs no betatron oscillations, and after one

complete turn returns to its starting conditions in transverse

phase space. In general, because of the presence of dipoles, the

path length C will be a function of the energy deviation δ. We

write this as a series:

C = C0

(
1 + αpδ +

1

2
α

(2)
p δ2 + · · ·

)
(18)
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The Momentum Compaction Factor

The path length in terms of the energy deviation is written as a

series (18):

C = C0

(
1 + αpδ +

1

2
α

(2)
p δ2 + · · ·

)
(19)

C0 is the path length of a particle with zero energy deviation:

this is sometimes referred to as the “circumference” of the

storage ring. The coefficient αp is called the momentum

compaction factor. From equation (19) we can write:

αp =
(

1

C

dC

dδ

)
δ=0

(20)

Notice that there are “higher-order momentum compaction

factors”, α(2)
p etc. Since this is a course on linear dynamics, we

shall consider only the first-order momentum compaction factor

αp.
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Calculating the Momentum Compaction in a Lattice

The momentum compaction is a property of the lattice. Given

a design for a beamline involving drifts, dipoles and

quadrupoles, one can calculate the momentum compaction.

Let us find a general expression for it.

Consider a curved reference trajectory, with radius of curvature

ρ, and consider a particle moving with displacement x in the

plane of the reference trajectory. The infinitesimal path length

dC of the particle for a path length ds = ρ dθ along the

reference trajectory is:

dC = (ρ+ x)dθ = (ρ+ x)
ds

ρ
(21)

The total path length C is obtained by integrating over all

infinitesimal path lengths:

C =
∫ C0

0
ds+

∫ C0

0

x

ρ
ds = C0 +

∫ C0

0

x

ρ
ds (22)
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Calculating the Momentum Compaction in a Lattice

dC = (ρ+ x)dθ = (ρ+ x)
ds

ρ
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Calculating the Momentum Compaction in a Lattice

Now, consider the case that the offset x arises purely from

dispersion, i.e. the transverse action is zero and x is a function

only of the energy deviation δ. In this case, we can write:

x = ηxδ +
1

2
η

(2)
x δ2 + · · · (23)

where ηx is the dispersion function that we saw how to

calculate earlier from the transfer matrix for a single cell. (Note

that there are also “higher-order dispersion functions”, η(2)
x etc.

Since this is a course in linear dynamics, we shall consider only

the linear dispersion, ηx.)

From equations (22) and (23) it follows that:

αp =
(

1

C

dC

dδ

)
δ=0

=
1

C0

∫ C0

0

ηx

ρ
ds (24)
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Calculating the Momentum Compaction in a Lattice

Equation (25) for the momentum compaction is:

αp =
(

1

C

dC

dδ

)
δ=0

=
1

C0

∫ C0

0

ηx

ρ
ds (25)

In other words, the proportional change in path length (over

one complete turn through the storage ring) with respect to

energy deviation is equal to the integral around the storage ring

of the dispersion divided by the local radius of curvature of the

reference trajectory, divided by the nominal path length.

Note that straight sections, where the reference trajectory is

not curved, effectively have a radius of curvature that is

infinite, ρ→∞. Thus, it is only regions where the reference

trajectory is curved (generally, dipoles) that contribute to the

momentum compaction.
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The Phase Slip Factor

We have seen that the momentum compaction factor αp
describes the proportional change in path length of a particle

moving round a storage ring with respect to energy deviation,

and the αp is a function only of the lattice design. The

revolution period T depends on the path length and the speed

of the particle, so involves the reference energy as well as the

lattice design.

To describe the proportional change in revolution period, we

introduce a quantity called the phase slip factor ηp, analagous

to the momentum compaction factor:

T = T0

(
1 + ηpδ +

1

2
η

(2)
p δ2 + · · ·

)
(26)

The phase slip factor ηp should not be confused with the

dispersion function ηx: they are different quantities.
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Calculating the Phase Slip Factor

Let us find an expression for the phase slip factor for a given

lattice and reference energy. From equation (26) we can write:

ηp =
(

1

T

dT

dδ

)
δ=0

(27)

Now we write:

T =
C

βc
(28)

where βc is the speed of the particle (c is the speed of light).

From equation (28) it follows that:

1

T

dT

dδ
=

1

C

dC

dδ
−

1

β

dβ

dδ
(29)
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Calculating the Phase Slip Factor

Using the definition of the energy deviation:

δ =
E

P0c
−

1

β0
(30)

we find:

βγ =

(
1

β0
+ δ

)
β0γ0 (31)

from which we find, after some algebra:

dβ

dδ
=
β0γ0

γ3
(32)

Using (32), we can write from (29):(
1

T

dT

dδ

)
δ=0

=
(

1

C

dC

dδ

)
δ=0
−
(
β0γ0

βγ3

)
δ=0

(33)

Finally, using (20) and (27), we have:

ηp = αp −
1

γ2
0

(34)
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Transition

The phase slip factor is given by (34):

ηp = αp −
1

γ2
0

(35)

We can identify three distinct regimes:

Below Transition
ηp < 0 αp < 0 or γ2

0 <
1
αp

revolution frequency increases

with increasing energy
At Transition

ηp = 0 γ2
0 = 1

αp
revolution frequency independent

of energy
Above Transition

ηp > 0 γ2
0 >

1
αp

revolution frequency decreases

with increasing energy

Hamiltonian Dynamics, Lecture 7 25 Longitudinal Dynamics



Understanding Transition

Consider a lattice with positive momentum compaction, i.e.
αp > 0. In such a lattice, increasing the energy of a particle
leads to an increase in path length. However, if the beam is at
low energy, such that the particles have speeds significantly less
than the speed of light, then increasing the energy of a particle
leads to an increase in its speed, which can more than
compensate the increase in path length. The result is that the
particle makes a larger number of revolutions per unit time.

For ultrarelativistic particles, however, an increase in energy
leads to a negligible increase in speed, since the particles are
already travelling very close to the speed of light. In this case,
the increase in path length dominates over the increase in
speed, and the particle makes a smaller number of revolutions
per unit time.

At some energy in between these two regimes, the revolution
frequency is independent of energy. This energy is known as
the transition energy.
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Understanding Transition

If αp > 0, increasing the energy of a particle increases the path

length (red, “dispersive” trajectory). If the particles are already

travelling at speeds close to the speed of light, increasing the

energy means that a particle takes a longer time to go round

the ring.
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Understanding Transition

Most modern electron storage rings operate with

ultrarelativistic particles (typically, E > 500 MeV, or γ0 > 1000),

and positive momentum compaction factor (αp ∼ 10−3 is

typical). Such rings are always above transition.

There has been some interest recently in operating electron

storage rings with very small, or even negative, momentum

compaction factor. Such operating modes, in which the beam

is below transition, are generally experimental, and of interest

for producing very short bunches, or counteracting certain

beam instabilities (collective effects).

Positron rings may inject beam at low energy, where the

particle speeds are significantly less than the speed of light.

Such a ring could be below transition. If the beam energy is

increased, the operational energy can actually cross transition.
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Longitudinal Dynamics with RF Cavities

The transfer matrix for a “thin” (L→ 0) RF cavity can be

written:

R =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 − 1

f‖
1


(36)

where the “longitudinal focusing strength” is given by:

1

f‖
=

qV̂

P0c
k cosφ0 (37)

V̂ is the voltage, k = 2πfRF/c where fRF is the RF frequency,

and φ0 is the RF phase.
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Synchrotron Radiation and the Synchronous Phase

In Lecture 4, we saw that there were zeroth-order terms in the

map for an RF cavity:

mz =
2

π
L sin2

(
ψ‖
2

)
tanφ0 (38)

mδ =
qV̂

P0c

sinψ‖
ψ‖

sinφ0 (39)

In the limit of a “thin” cavity (L→ 0), we have:

mz 7→ 0 (40)

mδ 7→
qV̂

P0c
sinφ0 (41)

For a thin cavity, the zeroth-order term for δ leads to a

non-zero change in δ if sinφ0 6= 0, even when the initial values

of z and δ are zero.
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Synchrotron Radiation and the Synchronous Phase

Relativistic particles in a storage ring lose energy by the

emission of synchrotron radiation in the bending magnets. This

energy must be replaced by the RF cavities.

In the simplest model of synchrotron radiation, the effect of

the radiation on a particle is the loss of some energy U0 over

one turn. The resulting change in the energy deviation is:

∆δ = −
U0

P0c
(42)

Therefore, if the particle crosses the RF cavity at a phase φ0

such that:

qV̂

P0c
sinφ0 =

U0

P0c
(43)

then the overall change in δ over one turn is zero.
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Synchrotron Radiation and the Synchronous Phase

The RF phase at which particles gain exactly the right amount

of energy to replace the energy lost through synchrotron

radiation is called the synchronous phase, φs. In proton storage

rings, where synchrotron radiation losses are usually negligible,

the synchronous phase is close to zero (or π). But in

high-energy electron storage rings, the particles lose significant

amounts of energy through synchrotron radiation, and the

synchronous phase is therefore significantly different from zero.

Synchrotron radiation also provides a mechanism that “damps”

particle oscillations so that they generally cross the RF cavities

at a phase close to the synchronous phase. For the rest of this

lecture, we shall always assume that the RF phase φ0 is equal

to the synchronous phase φs.
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Longitudinal Dynamics with RF Cavities

Let’s assume that we have designed a storage ring lattice using

drifts, normal quadrupoles and bending magnets in the

horizontal plane. We can design the lattice so that at some

point the dispersion is zero. Matching from some arbitrary

dispersion (ηx, ηpx) to zero dispersion (ηx = 0, ηpx = 0) may be

achieved using a dipole with appropriate parameters (length

and bending angle) calculated from equation (14):(
ηx
ηpx

)
s1

=

(
R11 R12
R21 R22

)
·
(
ηx
ηpx

)
s0

+

(
R16
R26

)
(44)

At the location with zero dispersion, there is no coupling, either

between the transverse planes, or between the transverse and

longitudinal planes. For our purposes, this is a good location

for an RF cavity, since it simplifies the analysis.
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Longitudinal Dynamics with RF Cavities

The longitudinal part of the transfer matrix for a single turn

through the storage ring, starting at the centre of the RF

cavity, may be written:

R‖ =

 1 0
− 1

2f‖
1

 · ( 1 −ηpC0
0 1

)
·

 1 0
− 1

2f‖
1



=

 1 +
ηpC0
2f‖

−ηpC0

−ηpC0
4f2
‖
− 1
f‖

1 +
ηpC0
2f‖

 (45)

where ηp is the phase slip factor, and C0 is the path length

along the reference trajectory.
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Longitudinal Dynamics with RF Cavities

Note that we can describe the longitudinal single-turn matrix

R‖ (45) using Twiss parameters and a phase advance in the

same way that we did for the transverse parts of the transfer

matrix. In practice, however, the longitudinal focusing is usually

very weak, so that: ∣∣∣∣∣∣ηpC0

f‖

∣∣∣∣∣∣� 1 (46)

In that case, the variation of the longitudinal Twiss parameters

around the ring is very small, and it is not usual to plot them or

even calculate them. However, for some specialised rings using

a very high RF voltage, or with very large phase slip, the

variation in Twiss parameters around the ring may be

substantial.
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Longitudinal Phase Advance

The longitudinal part of the transfer matrix for one turn,

starting at the centre of the RF cavity is (45):

R‖ =

 1 +
ηpC0
2f‖

−ηpC0

−ηpC0
4f2
‖
− 1
f‖

1 +
ηpC0
2f‖

 (47)

This can be written in the usual “Twiss” form:

R‖ =

(
cosµz + αz sinµz βz sinµz
−γz sinµz cosµz − αz sinµz

)
(48)

From (47) and (48), assuming that the longitudinal phase

advance µz is small, we can write:

µz ≈
√√√√−ηpC0

f‖
=

√√√√−2π
qV̂

P0c
β0hηp cosφs (49)

where we have defined the harmonic number, h:

h =
C0

β0λRF
(50)
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The Synchrotron Tune

The synchrotron tune, νs is defined as the number of complete
periods of longitudinal (synchrotron) motion per turn, i.e.:

νs =
µz

2π
≈

√√√√− 1

2π

qV̂

P0c
β0hηp cosφs (51)

Note that for stable synchrotron oscillations, the right-hand
side must be a real number, i.e.:

qV̂

P0c
hηp cosφs < 0 (52)

Assuming a positively charged beam, with positive RF voltage
and reference momentum, the condition for stable synchrotron
oscillations (52) reduces to:

ηp cosφs < 0 (53)

If the storage ring is operating above the transition energy,
then ηp > 0 and the longitudinal stability condition implies:

π

2
< φs <

3π

2
(54)
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The Harmonic Number and the Synchrotron Condition

In equation (50) we introduced the harmonic number:

h =
C0

β0λRF
(55)

Note that this can be written:

h =
C0

β0c
fRF =

T0

TRF
(56)

In other words, the harmonic number is the ratio of T0 (the
revolution period for the reference particle) and TRF (the RF
period). In a synchrotron, the particle motion and the RF
oscillations are synchronised, in the sense that particles arrive
at a fixed phase of the RF oscillations after each successive
turn around the storage ring. The “synchrotron condition” can
be expressed as:

h = integer (57)

In a synchrotron, there are two ways to change the energy of
the beam: one is to change the strengths of all the bending
magnets; the other is to change the RF frequency.
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A Physical Picture of Synchrotron Oscillations: Phase Stability

Particle A arrives at the RF cavity at the “correct” time to

restore the energy lost through synchrotron radiation. The

overall change in energy of particle A over one turn of the ring

is zero.
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A Physical Picture of Synchrotron Oscillations: Phase Stability

Particle B arrives at the RF cavity “early”, and receives extra

energy in addition to that lost through synchrotron radiation. If

the ring is above transition, the extra energy will tend to “slow

down” particle B. The effect is analogous to a restoring force,

acting in the direction of the synchronous phase φs.
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A Physical Picture of Synchrotron Oscillations: Phase Stability

Particle C arrives at the RF cavity “late”, and receives too little

energy to make up that lost through synchrotron radiation. If

the ring is above transition, the extra energy will tend to “speed

up” particle C. The effect is again analogous to a restoring

force, acting in the direction of the synchronous phase φs.
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Some Nonlinear Dynamics: Effects of RF Curvature

For small synchrotron oscillations, the slope of the RF voltage

is approximately linear. But for large oscillations, the sinusoidal

shape of the RF voltage as a function of time cannot be

neglected. To investigate some of the effects of this RF

“curvature”, let us assume that the synchrotron oscillations are

slow compared to the revolution period, i.e. the synchrotron

tune νs � 1. The longitudinal equations of motion can then be

approximated:

dz

ds
≈ −ηpδ

dδ

ds
≈

1

C0

qV̂

P0c
[sin(φs − kz)− sinφs] (58)

Equations (58) can be derived from the Hamiltonian:

H = −
ηp

2
δ2 −

1

kC0

qV̂

P0c
[cos(φs − kz)− kz sinφs] (59)

Since the evolution of the dynamical variables in phase space

follow a contour of fixed value for H, we can draw a “phase

space portrait”...
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Some Nonlinear Dynamics: Effects of RF Curvature

Particles follow contours in phase space of fixed value for the

Hamiltonian H. Note that there are bounded regions where the

contours form closed loops: particles in these regions perform

stable oscillations. The line forming the boundary of each

stable region is called a separatrix.
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Some Nonlinear Dynamics: Effects of RF Curvature

A region within a separatrix, where the particles perform stable

oscillations, is known as an RF bucket.
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Some Nonlinear Dynamics: Effects of RF Curvature

There is a maximum value for the energy deviation δ for any

particle within an RF bucket: this value is known as the RF

bucket height, δmax. It can be shown that:

δmax =
2νs
β0hηp

√
1 +

(
φs −

π

2

)
tanφs (60)

Hamiltonian Dynamics, Lecture 7 45 Longitudinal Dynamics



Summary I

The dispersion describes the change in trajectory of a particle

with energy. Dipoles introduce dispersion into a beamline. The

combination of dispersion with a curved reference trajectory

leads to a change in path length with energy: this is quantified

by the momentum compaction factor. The phase slip factor

quantifies the change in revolution period with energy in a

storage ring.

Because of relativistic limits on velocity, increasing the energy

of a particle can increase the path length without a significant

increase in speed; the result can be an increase in revolution

period. The energy at which the change in path length exactly

balances the increase in speed is called the transition energy:

at this energy, the phase slip factor is zero.
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Summary II

In a high-energy electron storage ring, RF cavities are needed

to replace the energy lost by synchrotron radiation. Particles

must cross the RF cavities at the correct RF phase (the

synchronous phase) to restore the exact amount of energy lost

through synchrotron raditaion. The gradient of RF voltage

with time has the effect of a “longitudinal focusing” force, and

results in synchrotron oscillations.

Phase stability results in particles making synchrotron

oscillations around the synchronous phase. The number of

synchrotron oscillations performed in each turn around the ring

is the synchrotron tune.

The “curvature” of the RF voltage resulting from the

sinusoidal waveform leads to a distortion of longitudinal phase

space, and a limit on the maximum energy deviation, beyond

which synchrotron oscillations are no longer stable.
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