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Course Outline

Part II (Lectures 6 – 10): Description of beam dynamics using

optical lattice functions.

6. Linear optics in periodic, uncoupled beamlines

7. Including longitudinal dynamics

8. Bunches of many particles

9. Coupled optics

10. Effects of linear imperfections
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Perfect and Imperfect Accelerators

In this course, we have learned how to track relativistic

particles through electromagnetic fields, and derived symplectic

transfer matrices to describe the linear dynamics. We have

learned how the linear dynamics in complicated configurations

of electromagnetic fields (that occur, for example, in an

accelerator beamline) can be described using the “lattice

functions” of beam optics.

So far, we have assumed that the lattice is perfect: in other

words, we have learned how to analyse and describe and

accelerator that exists as a design on a computer. When an

accelerator gets built, things are never exactly the way the

designer intended them to be: fields have the wrong strength,

and magnets are in the wrong position.
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Handling Imperfections

Understanding and dealing with machine errors is a significant

challenge in modern accelerators. The machines may be very

large, involving hundreds or thousands of magnets, each one of

which can be slightly wrong. Achieving the intended

performance levels requires errors to be reduced to levels where

they have no significant effect on the machine: and modern

machines can be very sensitive to errors. For example, in the

International Linear Collider, movement of some magnets in

the beam delivery system by a few nanometers can have a

severe impact on the machine performance.

A comprehensive survey of machine errors and how to deal with

them requires a course in itself. In many ways we are still

learning the subject: people are actively working on new ways

to locate the sources of errors and to compensate for them.
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Cases Covered in this Lecture

In this lecture, I shall present a brief introduction to some of

the more important errors and their effects, focusing on storage

rings. Specifically, I shall look at:

• steering errors, which lead to distortion of the closed orbit;

• focusing errors, which lead to changes in the tunes and the

lattice functions (Twiss parameters);

• coupling errors, which lead to beam coupling.
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Steering Errors

The reference trajectory is usually defined in such a way that a

particle with the reference momentum initially on the reference

trajectory will continue to travel on the reference trajectory.

The steering effects of dipoles can be accounted for by having

a curved reference trajectory.

If there is a dipole field error, then a particle following the

reference trajectory will be steered away from the reference

trajectory when it reaches the region of the dipole field error.

Dipole field errors can come from dipoles that don’t have

exactly the correct strength or have some rotation about the

reference trajectory; or from quadrupoles that don’t have the

correct horizontal or vertical alignment.
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Quadrupole Misalignments

With respect to the center of the quadrupole, the field is:

Bx = b2
y

r0
, By = b2

x

r0
, Bz = 0 (1)
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Quadrupole Misalignments

If the axis of the quadrupole is displaced vertically a distance

∆y from the reference trajectory, then the field with respect to

the reference trajectory can be found by making the

substitution:

y → y −∆y (2)

in equation (1) to obtain:

Bx = b2
y

r0
− b2

∆y

r0
, By = b2

x

r0
, Bz = 0 (3)

The second term in the expression for Bx in equation (3) is

independent of the coordinates: it appears as a dipole field

superposed on the quadrupole field.
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The Closed Orbit in a Storage Ring

A storage ring is designed so that the reference trajectory closes

on itself after one complete turn. If there is a dipole error in

the storage ring, then a particle initially following the reference

trajectory is deflected off the reference trajectory by the error.

However, there may still be a closed orbit, which is defined as

the trajectory of a particle that closes on itself after one turn.

The closed orbit must exist in an operating storage ring,

otherwise a beam cannot be stored. However, mathematically,

the closed orbit does not always have to exist. In fact, one of

the first tasks when commissioning a newly-built storage ring is

to tune the machine into a state where the closed orbit does

exist.
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The Closed Orbit in a Storage Ring

Consider a storage ring with a single dipole error at the

location s = 0 (as usual, the independent variable s measures

the distance along the reference trajectory). Let us see if we

can find an expression for the closed orbit: by doing this, we

also find the conditions necessary for the closed orbit to exist.

Let us suppose that the dipole field error can be represented by

a short horizontal field, of integrated strength Bx∆s. Then, the

change in vertical momentum of a particle moving through the

field is:

∆py =
q

P0
Bx∆s = ∆θy (4)

where q is the charge of the particle, and P0 is the reference

momentum.
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The Closed Orbit in an Uncoupled Storage Ring

A dipole field error causes a distortion of the closed orbit.

There is a “kink” in the closed orbit at the location of the

dipole field error.
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The Closed Orbit in an Uncoupled Storage Ring

Let us suppose that there is no coupling in the storage ring.

Then, because the field error is a horizontal dipole field, it has

no effect on the horizontal trajectory of a particle: the effects

are only in the vertical degree of freedom.

Now recall that the trajectory of a particle moving through an

accelerator can be written in terms of the lattice functions and

the action-angle variables:

y =
√

2βyJy cosφy (5)

py =

√
2Jy
βy

(sinφy + αy cosφy) (6)

Let us try to find a trajectory that closes on itself after one

turn, starting from just after the dipole field error. We shall

express this trajectory in terms of some initial (and conserved)

action Jy0, and initial angle φy0.
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The Closed Orbit in an Uncoupled Storage Ring

If the total phase advance over one turn of the storage ring is

µy, then the conditions for the trajectory of a particle to close

on itself can be written, from (5):√
2βyJy0 cos(φy0 + µy) =

√
2βyJy0 cos(φy0) (7)

and from (6):√√√√2Jy0

βy
(sin(φy0 + µy) + αy cos(φy0 + µy)) + ∆θy =√√√√2Jy0

βy
(sinφy0 + αy cosφy0) (8)

where the Twiss parameters are to be evaluated at s = 0.

Equations (7) and (8) may be solved to give:

Jy0 =
βy∆θ2

8 sin2 πνy
, φy0 = πνy (9)

where νy = µy/2π is the vertical tune.
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The Closed Orbit in an Uncoupled Storage Ring

Consider the expression from (9) for the action of the closed

orbit:

Jy0 =
βy∆θ2

y

8 sin2 πνy
(10)

We immediately see that if νy = 0, in other words if the tune is

on the integer resonance, then the denominator vanishes, and

there is no solution for the action. This is the condition for the

closed orbit to exist: the tune of the machine must be off the

integer resonance.

Even if the lattice is close to the integer resonance, though not

exactly on the resonance, then the factor 1/ sin2 πνy makes the

closed orbit very sensitive to dipole field errors: even a small

error can lead to a large closed orbit distortion. This can make

practical operation of the storage ring very difficult, because

alignment tolerances on the quadrupoles become very

demanding.
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The Closed Orbit in an Uncoupled Storage Ring

The other point to notice in the expression for the action of

the closed orbit (9):

Jy0 =
βy∆θ2

y

8 sin2 πνy
(11)

is the dependence on the beta function. The larger the beta

function at the location of the dipole field error, the larger the

closed orbit distortion for a given size of field error. This is of

great practical significance: the larger the beta function, the

more sensitive the beam is to dipole field errors (or similar

effects causing deflections). Generally, lattice designers try to

keep beta functions low, a few 10’s of metres. In some cases,

very large beta functions (even 10’s of kilometres) may be

unavoidable, for example in the final focus systems of colliders.

With large beta functions, sensitivity to errors is very much a

concern.
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The Closed Orbit in an Uncoupled Storage Ring

Usually, in a storage ring, the closed orbit at a number of

locations around the ring is measured with beam position

monitors (BPMs). The corresponding momentum is not usually

observable.

Using equations (9) we can write the vertical coordinate of the

closed orbit resulting from a single dipole field error at s = 0:

yco(s) =

√
βy(0)βy(s)

2 sinπνy
∆θy cos(πνy + µy(s)) (12)

where µy(s) is the phase advance to a point s from s = 0.

Note that the closed orbit at any point depends on the beta

function at that point, as well as the beta function at the

location of the dipole field error.
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The Closed Orbit in an Uncoupled Storage Ring

Usually, of course, there is not just one error in a storage ring,

but a large number of errors distributed around the ring. If the

orbit distortion is not too large, then we may simply use linear

superposition to add together the effects from all the various

errors. For example, for a horizontal dipole field error Bx(s)

which is a function of position, the closed orbit distortion is:

yco(s) =
∫ C0

0

√
βy(s′)βy(s)

2 sinπνy

q

P0
Bx(s′) cos(πνy + µy(s′, s))ds′ (13)

where C0 is the length of the reference trajectory, and µy(s′, s)
is the phase advance from point s′ to point s along the

reference trajectory.
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The Closed Orbit in a Coupled Storage Ring

When coupling is present, complicated effects can occur from

dipole field errors. For example, consider introducing a vertical

dipole field error at a location where the reference trajectory is

curved: for example, we might adjust the power supply on a

main bending magnet. This leads to a change in the horizontal

closed orbit; but because of the curvature of the reference

trajectory, this then leads to a change in the total path length

around the ring. If the RF frequency is kept fixed, then the

energy of the particles in the beam must change to maintain

synchronisation with the RF field in the cavities. But the

change in energy leads to an additional change in the closed

orbit, because of the dispersion in the ring.
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The Closed Orbit in a Coupled Storage Ring

Despite the complexity of the response of the closed orbit to

steering errors in a coupled storage ring, there is in fact an easy

way to compute the closed orbit in the presence of a single

dipole error. This follows from writing the closed orbit

condition:

R · ~xco + ∆~θ = ~xco (14)

where R is the single-turn matrix from the point immediately

following the (short) region of the field error, and ∆~θ describes

the deflection from the field error (which can be horizontal,

vertical, or a change in energy deviation).

From equation (15) we find:

~xco = (I −R)−1 ·∆~θ (15)

where I is the identity matrix. The condition for the closed

orbit to exist is that the matrix (I −R) is invertible.
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The Closed Orbit in a Coupled Storage Ring

Note that equation (15):

~xco = (I −R)−1 ·∆~θ

gives the closed orbit at a single location in the ring, which is

the location of the field error. To propagate the closed orbit

around the ring, one needs to use the transfer matrices from

the location of the error to other locations of interest (for

example, the locations of the BPMs).

Although equation (15) takes a nice simple form, applying it to

find the closed orbit in a specific case does require the inversion

of a 6× 6 matrix. Also, looked at in this way, we don’t

immediately see how the tunes and the lattice functions affect

the sensitivity of the closed orbit to dipole field errors.
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Correcting the Closed Orbit

Control of the closed orbit in a storage ring is fundamental to

its effective operation. It is necessary in a light source for

directing the synchrotron radiation accurately down the

beamlines to the synchrotron light users; and in a collider for

making sure that the beams collide. Orbit control is also the

first step in correcting focusing and coupling errors, which we

shall discuss shortly.
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Correcting the Closed Orbit: Steering Magnets

Steering magnet from SPARC

Generally, one controls the orbit in a beamline (storage ring or

linear beamline) using a set of small dipole magnets placed at

intervals along the beamline. These steering magnets or orbit

correctors allow the operators to apply controlled “dipole field

errors” to compensate the errors that are not controlled (those

arising from misalignments of quadrupoles, or faults in dipole

magnet power supplies).
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Correcting the Closed Orbit: The Orbit Response Matrix

Four-button BPM

In addition to the orbit correctors, the other essential

instruments in orbit control are beam position monitors (BPMs)

that measure the transverse position of the closed orbit at

various locations around the ring. One can construct an orbit

response matrix, M ; the component Mij of the orbit response

matrix is the change in reading on the ith BPM, in response to

a given change in the strength of the jth orbit corrector.
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Correcting the Closed Orbit: The Orbit Response Matrix

If ∆~c is a vector constructed from the change in orbit corrector

strengths, and ∆~x is the corresponding change in BPM

readings, then:

∆~x = M ·∆~c (16)

where M is the orbit response matrix. M may be calculated

from a model of the machine, or it may be measured by

adjusting the strength of each corrector magnet in turn, and

measuring the resulting change in closed orbit.

Determining the changes in corrector strengths necessary to

achieve a desired set of readings on the BPMs involves

inverting the orbit response matrix M . Generally, the number

of BPMs is different from the number of corrector magnets, so

M is not a square matrix. However, it can still be inverted,

using clever algorithms such as Singular Value Decomposition.
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Focusing Errors in an Uncoupled Storage Ring

Another common field error in a storage ring is an error in the

strength of a quadrupole magnet. Assuming there are no

closed orbit distortions, and the reference trajectory passes

through the center of the quadrupole, then changing the

strength of a quadrupole does not change the closed orbit.

However, changing the strength of a quadrupole does result in

a focusing error that changes the phase advances (tunes) and

the lattice functions.
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Focusing Errors from Sextupole Misalignments

Note that focusing errors can also come from horizontal

misalignments of sextupole magnets. Recall that the field in a

normal sextupole with axis on the reference trajectory can be

written:

Bx = 2b3
xy

r2
0
, By = b3

(x2 − y2)

r2
0

, Bz = 0 (17)

A horizontal misalignment of the sextupole by distance ∆x can

be represented by the transformation:

x→ x−∆x (18)
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Focusing Errors from Sextupole Misalignments

Under the transformation (18):

x→ x−∆x (19)

the field in the sextupole becomes:

Bx = 2b3
xy

r2
0
− 2b3

∆x

r0

y

r0
(20)

By = b3
(x2 − y2)

r2
0

− 2b3
∆x

r0

x

r0
+ b3

∆x2

r2
0

(21)

Bz = 0 (22)

The terms linear in ∆x result in an effective quadrupole field,

of strength b2 = −2b3∆x/r0, superposed on the sextupole field.

There is also a dipole term, which will lead to a steering error,

but this is second order in the misalignment ∆x, which we

hope is small.
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Focusing Errors in an Uncoupled Storage Ring

Let us consider the effects of a focusing error in an uncoupled

storage ring. We write the single-turn transfer matrix for the

horizontal motion at the location of the quadrupole (without

the focusing error) in the usual form:

R =

(
cosµx + αx sinµx βx sinµx
−γx sinµx cosµx − αx sinµx

)
(23)

where µx = 2πνx is the total phase advance, and νx is the tune.

We represent the focusing error as:

Rerr =

(
1 0

−∆K 1

)
(24)

Note that a positive value for ∆K represents an increase in

strength for a horizontally focusing magnet.
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Focusing Errors in an Uncoupled Storage Ring

The single-turn transfer matrix including the focusing error, R̃,

is obtained simply by multiplying the original transfer matrix R

with the matrix Rerr representing the error:

R̃ = R ·Rerr (25)

We can also express R̃ in terms of the new phase advance µ̃x

and lattice functions:

R̃ =

(
cos µ̃x + α̃x sin µ̃x β̃x sin µ̃x
−γ̃x sin µ̃x cos µ̃x − α̃x sin µ̃x

)
(26)

If we equate the right-hand sides of equations (25) and (26),

and make some approximations for small ∆K, we find:

∆νx ≈
∆Kβx

4π
, β̃x ≈

βx

1 + 1
2∆Kβx cotµx

(27)

where ∆νx is the change in the tune as a result of the focusing

error.
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Focusing Errors in an Uncoupled Storage Ring

The change in the tune resulting from a focusing error is (27):

∆νx ≈
∆Kβx

4π
(28)

Note that there is again a dependence on the beta function:

the larger the beta function at the location of the error, the

greater the change in tune that results from the focusing error.

Note also that for positive ∆K, i.e. an increase in focusing

strength, the change in the tune is also positive. An increase in

focusing strength at one point in the lattice leads to an overall

increase in phase advance around the storage ring.
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Focusing Errors in an Uncoupled Storage Ring

The change in the beta function resulting from a focusing error

is (27):

β̃x ≈
βx

1 + 1
2∆Kβx cotµx

(29)

Whether the beta function increases or decreases for ∆K > 0

depends on the sign of cotµx, i.e. on the value of the tune.

As usual, the sensitivity to the error depends on the value of

the beta function at the location of the error: the larger the

beta function, the greater the sensitivity. However, the

sensitivity also depends on the tune: if the fractional part of

the tune is close to 0 or 0.5, then the beta functions become

very sensitive to focusing errors. This is consistent with our

observation in the previous lecture, that the dynamics become

unstable on the integer and half-integer resonances.
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Focusing Errors in an Uncoupled Storage Ring

β̃x ≈
βx

1 + 1
2∆Kβx cotµx

(30)
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Coupling Errors in a Storage Ring

Unwanted skew quadrupole or solenoid fields in a beamline lead

to coupling errors. Skew quadrupole fields can arise from the

tilt of normal quadrupoles about the beam trajectory, or from

vertical misalignments of sextupoles. We won’t go through this

case in detail, but simply note that the expression for the tune

shift from the uncoupled case (28) generalises for the coupled

case. In particular, if the focusing error is represented by the

transfer matrix:

Rerr =



1 0 0 0 0 0
−∆K11 1 −∆K13 0 −∆K15 0

0 0 1 0 0 0
−∆K31 0 −∆K33 1 −∆K35 0

0 0 0 0 1 0
−∆K51 0 −∆K53 0 −∆K55 1


(31)

then the tune shifts resulting from the focusing error can be

written:

∆νk ≈
1

4π

∑
i,j=1,3,5

βkij∆Kij (32)
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Coupling Errors in a Storage Ring

Some interesting features of coupling emerge if we compute
the tunes from the eigenvalues of the transfer matrix in the
presence of a coupling error. Consider the transverse motion in
a storage ring. Initially, the ring is uncoupled and free of errors:
let the betatron tunes in this case be νx and νy. In the presence
of a coupling error, we can calculate the “perturbed” tunes ν̃I
and ν̃II from the eigenvalues of the matrix R̃:

R̃ = R(νx, νy) ·Rerr (33)

where the matrix Rerr represents a skew quadrupole field error:

Rerr =


1 0 0 0
0 1 −∆K 0
0 0 1 0

−∆K 0 0 1

 (34)

By adjusting quadrupole strengths we can adjust the tunes. Let
us suppose we keep νx fixed and vary νy. Then we plot the
“perturbed” tunes ν̃I and ν̃II as a function of νy for a fixed value
of ∆K...
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Coupling Errors in a Storage Ring
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Coupling Errors in a Storage Ring

It can be shown that the distance between the “perturbed”

tunes |ν̃I − ν̃II| at νy = νx (“on the coupling resonance”) is given

by:

|ν̃I − ν̃II|νy=νx ≈

√
βxβy

2π
∆K (35)

In a storage ring, we can control the tunes by adjusting the

quadrupole strengths. We can also measure the tunes ν̃I and ν̃II

by resonant excitation of the beam at the betatron frequencies.

Thus, we can measure the closest approach of the tunes in a

real machine: this allows us to characterise the coupling errors.
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Summary

Dipole field errors result in distortion of the closed orbit. Dipole

field errors can be caused by variation in the field strength in

dipoles, and by transverse misalignments of quadrupoles.

Focusing errors from normal quadrupoles lead to changes in the

betatron tunes, and in variation of the beta functions. Focusing

errors can be caused by variations of the field strength in

quadrupoles, and by horizontal misalignments of sextupoles.

Skew quadrupole field errors lead to beam coupling. Skew

quadrupole field errors can be caused by tilts of normal

quadrupoles around the magnetic axis, and by vertical

misalignments of sextupoles.

In all cases, the beta function at the location of the error is an

important quantity: the larger the beta function, the greater

the sensitivity to the error.
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