Cockcroft Lectures: Intermediate Beam Dynamics for Particle Accelerators

Problem Set 9

A. Wolski \& B. Muratori

May, 2022

1. In one degree of freedom, the beam distribution matrix (the Σ matrix) is a 2×2 symmetric matrix, which is parameterised in terms of the Twiss parameters $\alpha_{x}, \beta_{x}, \gamma_{x}$, and the emittance ϵ_{x} :

$$
\Sigma=\left(\begin{array}{cc}
\left\langle x^{2}\right\rangle & \left\langle x p_{x}\right\rangle \tag{1}\\
\left\langle x p_{x}\right\rangle & \left\langle p_{x}^{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\beta_{x} & -\alpha_{x} \\
-\alpha_{x} & \gamma_{x}
\end{array}\right) \epsilon_{x}
$$

The matrix Σ has three independent components. Using the parameterisation in terms of the Twiss parameters and the emittance, there are apparently $3+1=4$ variables. However, the condition:

$$
\begin{equation*}
\beta_{x} \gamma_{x}-\alpha_{x}^{2}=1 \tag{2}
\end{equation*}
$$

imposes one constraint, allowing us to eliminate one of the Twiss parameters. The number of independent variables in the Twiss/emittance parameterisation is therefore equal to the number of independent components in the beam distribution matrix, Σ.
(a) In three degrees of freedom, how many independent components are there of the beam distribution matrix, Σ ?
(b) In three degrees of freedom, the "generalised Twiss parameters" are the components of the 6×6 symmetric matrices B^{k}. How many generalised Twiss parameters are there in three degrees of freedom? How many emittances are there?
(c) How many relationships must there be between the generalised Twiss parameters in three degrees of freedom (analogous to the relationship $\beta_{x} \gamma_{x}-\alpha_{x}^{2}=1$ in one degree of freedom)?
2. Assume that the horizontal coordinate of a particle in a bunch is given by:

$$
\begin{equation*}
x=\sqrt{2 \beta_{x} J_{x}} \cos \phi_{x}+\eta_{x} \delta \tag{3}
\end{equation*}
$$

where the angle variables ϕ_{x} are uncorrelated with any other variables, and η_{x} is the dispersion. Assume also that the action variables J_{x} are uncorrelated with the energy deviations δ.
(a) Using equation (3), find a relationship between the moments $\langle x \delta\rangle$ and $\left\langle\delta^{2}\right\rangle$.
(b) Write the moments $\langle x \delta\rangle$ and $\left\langle\delta^{2}\right\rangle$ in terms of generalised Twiss parameters $\beta_{i j}^{k}$, and the emittances ϵ_{k}.
(c) Write down an expression for the dispersion η_{x} in terms of generalised Twiss parameters.

