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Review of Uncoupled Optics

In the previous lecture, we saw how the size of a bunch of

many particles could be described by a sigma matrix,

constructed from the second order moments of the phase space

variables of particles in the bunch.

In the case that the sigma matrix is block diagonal, we say that

the bunch was “uncoupled”: there are no correlations between

the variables in different degrees of freedom.

For an uncoupled bunch, we saw how to derive the bunch

emittances, which were invariant quantities for a bunch

undergoing linear symplectic transport. The variation in the

size of the bunch along a beamline is found by combining the

emittances with the Twiss parameters.
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Course Outline

Part II (Lectures 6 – 10): Description of beam dynamics using

optical lattice functions.

6. Linear optics in periodic, uncoupled beamlines

7. Including longitudinal dynamics

8. Bunches of many particles

9. Coupled optics

10. Effects of linear imperfections
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Towards Coupled Optics

Many beamlines are designed to transport uncoupled bunches;

but in reality, errors that introduce coupling cannot be avoided.

It is therefore of great practical importance to have a means for

describing the optics of coupled bunches.

There are many methods that have been derived for describing

coupled optics. Sometimes, people feel quite strongly about

the relative merits or failings of different methods.

In this lecture, I shall present one method that describes the

coupled optics in a way that I find simple and intuitive.

Essentially, we rederive the results that we have seen already in

the uncoupled case for the lattice functions, phase advances,

emittances etc. using a general 6× 6 matrix formalism, with no

assumptions about the absence or presence of coupling. We

start by deriving some useful properties of symplectic

matrices...
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Symplectic Matrices

A symplectic matrix M is one that satisfies:

MT · S ·M = S (1)

where S is a block-diagonal matrix, composed of the 2× 2

sub-matrices:

S2 =

(
0 1
−1 0

)
(2)
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Some Useful Properties of Symplectic Matrices

If M is a symplectic matrix, then:

• The eigenvalues of M occur in reciprocal pairs, λ±k, such

that:

λ−kλk = 1 (3)

• The eigenvectors can be normalised and arranged to form a

matrix E, such that:

ET · S · E = iS (4)
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Proof of Equations (3) and (4)

If ~ei is an eigenvector of the matrix M with corresponding

eigenvalue λi then:

M · ~ei = λi~ei (5)

It follows that:

~eT
i ·M

T · S ·M · ~ej = λiλj~e
T
i · S · ~ej (6)

But if M is symplectic, then

MT · S ·M = S (7)

From equations (6) and (7) it follows that:

~eT
i · S · ~ej = λiλj~e

T
i · S · ~ej (8)

Hence, we must have either:

λiλj = 1 (9)

or:

~eT
i · S · ~ej = 0 (10)
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Proof of Equations (3) and (4)

From equation (9) we can sort the eigenvalues into pairs such

that:

λ−kλk = 1, k = I, II, III (11)

In general, we have from equation (10) for the eigenvectors

(with appropriate normalisation):

~eT
j · S · ~ek =

{
0 if j 6= −k
±i if j = −k (12)

for j, k = I, II, III. If we then arrange the eigenvectors into a

matrix E in an appropriate order, equation (4) then follows

that:

ET · S · E = iS (13)
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The Normalising Matrix

We define the matrix Q that is block diagonal, with

block-diagonal components Q2 given by:

Q2 =
1√
2

(
1 i
1 −i

)
(14)

Using Q, we construct the normalising matrix, N :

N = E ·Q (15)

where E is the matrix of eigenvectors of R. N has the property:

N−1 ·R ·N = R̃(µI, µII, µIII) (16)

where R is the transfer matrix for one periodic cell of a

beamline, and R̃ is a (block-diagonal) rotation matrix with

rotation angles µk, where the eigenvalues of R are exp(±iµk).
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Proof of Equation (16)

Since E is an matrix constructed from the eigenvectors of R

with appropriate ordering, it follows that E diagonalises R, with

the eigenvalues forming the components on the diagonal:

E−1 ·R · E =



e−iµI

eiµI

e−iµII

eiµII

e−iµIII

eiµIII


(17)
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Proof of Equation (16)

With the definition of Q given by equation (14) it follows at

once that:

Q−1 · E−1 ·R · E ·Q = R̃(µI, µII, µIII) (18)

where

R̃(µI, µII, µIII) =

 R̃2(µI)
R̃2(µII)

R̃2(µIII)

 (19)

and R̃2(µk) are 2× 2 rotation matrices:

R̃2(µk) =

(
cosµk sinµk
− sinµk cosµk

)
(20)

Since N = E ·Q (15), we have finally (16):

N−1 ·R ·N = R̃(µI, µII, µIII) (21)
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The Normalising Matrix is Symplectic

The normalizing matrix is symplectic, i.e.:

NT · S ·N = S (22)

The proof of equation (22) is straightforward. Since N = E ·Q,

we can write:

NT · S ·N = QT · ET · S · E ·Q (23)

Then from equation (4):

ET · S · E = iS (24)

we have:

NT · S ·N = iQT · S ·Q (25)

Equation (22) then follows directly from the definition (14) of

Q. Note that since N is symplectic, its inverse N−1 is also

symplectic.
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Action-Angle Variables

We use the normalising matrix N to define a vector ~J of new

dynamical variables:

~J = N−1 · ~x (26)

where

~J =



XI
PI
XII
PII
XIII
PIII


, ~x =



x
px
y
py
z
δ


(27)

Since the variables (x, px) etc. form canonically conjugate pairs,

and the new variables (Xk, Pk) are derived from them by a

symplectic transformation (N−1), it follows that the new

variables (Xk, Pk) are also canonically conjugate (see Goldstein,

section 9-3).
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Action-Angle Variables

Using the mixed-variable generating function:

F1(Xk, φk) = −
1

2

∑
k=I,II,III

X2
k tanφk (28)

and the usual relations:

Xk =
∂F1

∂Pk
, Jk = −

∂F1

∂φk
(29)

we derive new canonical (action-angle) variables (φk, Jk):

Jk =
1

2
(X2

k + P2
k ) tanφk = −

Pk
Xk

(30)

in terms of which:

~J =



√
2JI cosφI

−
√

2JI sinφI√
2JII cosφII

−
√

2JII sinφII√
2JIII cosφIII

−
√

2JIII sinφIII


(31)
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Transformation of the Action-Angle Variables Under R

Under the transfer matrix R for a single periodic cell of the

beamline, the action-angle variables transform as:

Jk → Jk, φk → φk + µk (32)

The transformations (32) may be shown as follows. Consider a

transformation R = R(s0, s1) across one complete periodic cell

from point s0 along the reference trajectory to point s1:

~x(s1) = R · ~x(s0) (33)

Then:

~J(s1) = N−1 · ~x(s1) (34)

= N−1 ·R · ~x(s0) (35)

= N−1 ·R ·N ·N−1~x(s0) (36)

= N−1 ·R ·N · ~J(s0) (37)
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Proof of Transformations (32)

Using equation (16) in (37), we have:

~J(s1) = R̃(µI, µII, µIII) · ~J(s0) (38)

Since R̃(µI, µII, µIII) is a rotation matrix (19), we find that:

R̃(µI, µII, µIII) ·



√
2JI cosφI

−
√

2JI sinφI√
2JII cosφII

−
√

2JII sinφII√
2JIII cosφIII

−
√

2JIII sinφIII


=



√
2JI cos(φI + µI)

−
√

2JI sin(φI + µI)√
2JII cos(φII + µII)

−
√

2JII sin(φII + µII)√
2JIII cos(φIII + µIII)

−
√

2JIII sin(φIII + µIII)


(39)

The transformations (32) follow. The actions Jk are conserved,

and we identify the phase angles µk derived from the

eigenvalues of the transfer matrix R for one periodic cell of the

beamline with the phase advance across one periodic cell.
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Tunes of a Storage Ring

The tune of a storage ring is defined as the total phase

advance for one turn round the ring, divided by 2π. Note that

there are three tunes, corresponding to the three degrees of

freedom: horizontal, vertical and longitudinal.

Consider a symplectic transfer matrix R that represents the

map for one complete turn round a storage ring. The fractional

parts of the tunes can be written:

νk =
µk
2π

=
argλk

2π
(40)

where λ±k are the eigenvalues of R.
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Eigenvalues of the Transfer Matrix and Linear Stability

Consider the transfer matrix R for one periodic cell of a

beamline. The transfer matrix is symplectic, so the eigenvalues

occur in reciprocal pairs. Now suppose that a phase space

vector ~x can be decomposed in terms of the eigenvectors of R:

~x0 =
∑

k=I,II,III

c−k~e−k + ck~ek (41)

Then after transport through n periodic cells, the phase space

vector becomes:

~x(n) = Rn~x0 =
∑

k=I,II,III

c−kλ
n
−k~e−k + ckλ

n
k~ek (42)

If all the eigenvalue pairs (λ−k, λk) lie on the unit circle (i.e.

form complex conjugate pairs) then the amplitude of the

coefficients of the various eigenvectors in the decomposition of

~x remain the same size, and the motion of a particle starting

from ~x0 remains bounded.
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Eigenvalues of the Transfer Matrix and Linear Stability

However, if one pair of eigenvalues (λ−k, λk) are real, then

unless they are both exactly equal to ±1, one of the

eigenvalues must be greater than one. In this case, we see from

(42) that the coefficient of at least one of the eigenvectors in

the decomposition of the phase space vector increases without

bound: the motion of the particle is unstable.

In the case of a storage ring, we see from equation (40) that

real eigenvalues correspond to values for the tunes:

νk = 0, or νk = 0.5 (43)

If the fractional part of the tune is 0 or 0.5, then the linear

dynamics will not be stable. In accelerator jargon, we would say

the lattice is “on the integer resonance”, or “on the

half-integer resonance”.
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Stable and Unstable Linear Dynamics
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The Matched Distribution

If the angle variables are uncorrelated so that:

〈sinφj sinφk〉 = 〈cosφj cosφk〉 =
1

2
δjk (44)

(where δjk is the Kronecker delta symbol) and:

〈sinφj cosφk〉 = 0 (45)

then the sigma matrix can be written:

Σ =
∑

k=I,II,III

Bkεk (46)

where the matrices Bk are defined:

Bk = N · T k ·NT (47)

the emittances εk are given by:

εk = 〈Jk〉 (48)

and the distribution is matched in the sense that the sigma
matrix is invariant under transport through one periodic cell:

R ·Σ ·RT = Σ (49)
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Proof of Equation (46)

The sigma matrix may be written as the average over all

particles in the bunch of the outer product of the phase space

variables:

Σ = 〈~x · ~xT〉 (50)

Using the definition of the vector ~J (26), we can write:

Σ = N · 〈 ~J · ~JT〉 ·NT (51)

Let us assume that the angle variables of particles in the bunch

are uncorrelated, in the sense that they satisfy (44):

〈sinφj sinφk〉 = 〈cosφj cosφk〉 =
1

2
δjk (52)

and (45):

〈sinφj cosφk〉 = 0 (53)
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Proof of Equation (46)

Then, using the expression for ~J (31), we find that:

Σ =
∑

k=I,II,III

N · T k ·NTεk (54)

where

T I =


1

1
0

0
0

0

 , T II =


0

0
1

1
0

0

 , T III =


0

0
0

0
1

1


(55)

and

εk = 〈Jk〉 (56)

Hamiltonian Dynamics, Lecture 9 22 Coupled Optics



Proof of Equation (46)

If we define:

Bk = N · T k ·NT (57)

then equation (54) may be written:

Σ =
∑

k=I,II,III

Bkεk (58)

The components Bkij of the matrices Bk are the generalisations

of the Twiss parameters to coupled optics; we refer to them as

the coupled lattice functions, or the generalised Twiss

parameters.
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Proof of Equation (49)

If the phase angles of all particles in the bunch are uncorrelated

(44), (45), then equation (49):

R ·Σ ·RT = Σ (59)

tells us that the bunch distribution is matched to the transfer

matrix for one periodic cell. This may be shown as follows.

First, using equation (54) we write:

R ·Σ ·RT =
∑

k=I,II,III

R ·N · T k ·NT ·RTεk (60)

But from equation (16) we can write:

R ·N = N · R̃ (61)

Hence:

R ·Σ ·RT =
∑

k=I,II,III

N · R̃ · T k · R̃T ·NTεk (62)
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Proof of Equation (49)

But since R̃ is just a rotation matrix:

R̃T = R̃−1 (63)

and:

R̃ · T k · R̃T = T k (64)

Hence:∑
k=I,II,III

R ·N · T k ·NT ·RTεk =
∑

k=I,II,III

N · T k ·NTεk = Σ (65)

So finally, from equation (60), equation (49) follows:

R ·Σ ·RT = Σ (66)
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Eigenvalues and Eigenvectors of Σ · S

The eigenvalues of Σ · S are ±iεk where the emittances εk are

given by equation (48).

The eigenvectors of Σ · S are contained in the same matrix E

that contains the eigenvectors of the transfer matrix R.

These statements may be proved as follows. First we use

equation (46) to write:

Σ · S =
∑

k=I,II,III

Bk · Sεk (67)

Now, using the definition (47) for the matrices Bk we write:

Bk · S = N · T k ·NT · S (68)

But since N is symplectic (22), it follows that:

Bk · S = N · T k · S ·N−1 (69)
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Eigenvalues and Eigenvectors of Σ · S

Now, from the definition (15) of the normalising matrix N :

N = E ·Q (70)

it follows that:

Bk · S = E ·Q · T k · S ·Q−1 · E−1 (71)

or:

E−1 ·Bk · S · E = Q · T k · S ·Q−1 (72)

The matrices on the right hand side of equation (72) are all

constant. Performing the matrix multiplications, we find:

E−1 ·Bk · S · E = −iT̄ k (73)

where

T̄ I =


1
−1

0
0

0
0

 , T̄ II =


0

0
1
−1

0
0

 , T̄ III =


0

0
0

0
1
−1


(74)
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Eigenvalues and Eigenvectors of Σ · S

Finally, from equation (67) and equation (73) we can write:

E−1 ·Σ · S · E = −i



εI
−εI

εII
−εII

εIII
−εIII


(75)

Since E diagonalises Σ · S, it must be constructed from the

eigenvectors of Σ · S. The components on the diagonal of the

diagonalised matrix are the eigenvalues of Σ · S, and we see

that these are ±iεk, where εk are the emittances.
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Transformation of the Coupled Lattice Functions

Consider the transformation of the sigma matrix under the

action of a transfer matrix R = R(s0, s1), corresponding to the

transport of a bunch from a point s0 along the reference

trajectory to a point s1. We do not now require that the

transport be through a complete periodic cell. Since the

coordinates of each particle in the bunch transform:

~x(s1) = R · ~x(s0) (76)

It follows from (50) that the sigma matrix transforms as:

Σ(s1) = R ·Σ(s0) ·RT (77)

Hence we have:

Σ(s1) · S = R ·Σ(s0) ·RT · S (78)

= R ·Σ(s0) · S ·R−1 (79)

where the last step follows from the fact that the transfer

matrix R is symplectic.
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Transformation of the Coupled Lattice Functions

We have shown that:

Σ(s1) · S = R ·Σ(s0) · S ·R−1 (80)

But for any matrices U and V , the eigenvalues of V are the

same as the eigenvalues of U · V ·U−1. Hence the eigenvalues of

Σ(s1) · S are equal to the eigenvalues of Σ(s0) · S. But these

eigenvalues are just ±iεk, where εk are the bunch emittances.

Hence, the bunch emittances are conserved under any linear

symplectic transformation: this is just a consequence of

Liouville’s theorem.
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Transformation of the Coupled Lattice Functions

Since the bunch emittances are conserved, and the sigma

matrix is related to the coupled lattice functions through (46):

Σ =
∑

k=I,II,III

Bkεk (81)

the coupled lattice functions must transform in the same way

as the sigma matrix, i.e.

Bk(s1) = R ·Bk(s0) ·RT (82)

Here, R is any symplectic transfer matrix: there is no

requirement that the beamline be periodic. Hence, as in the

uncoupled case, we can determine the initial lattice functions

from the bunch distribution at the start of the beamline, and

then propagate the lattice functions along the beamline using

the appropriate transfer matrices.

Hamiltonian Dynamics, Lecture 9 31 Coupled Optics



Example: Lattice Functions with a “Coupling Bump”
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Final Remarks: The Horizontal Beam Size

Consider a bunch of particles in a storage ring. If we know the

transfer matrix R for one full turn of the ring starting at some

point, then we can calculate (from the eigenvectors of R) the

coupled lattice functions Bk at that point. If we also know the

bunch emittances, then we can calculate the sigma matrix for

the matched distribution at that point. In particular, the square

of the horizontal beam size is given by:

〈x2〉 = βI
11εI + βII

11εII + βIII
11εIII (83)

This equation is exact. However, you often see an alternative

expression used that requires some assumptions...
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Final Remarks: The Horizontal Beam Size

If we assume that there is no coupling between the horizontal

and vertical planes, then βII
11 = 0. Also, if the coupling between

the horizontal and longitudinal planes is weak, then we can

make the approximation:

βI
11 ≈ βx (84)

where βx is the horizontal beta function (Twiss parameter)

describing the horizontal motion in the absence of any

coupling. Furthermore, if the longitudinal motion is slow, so

that the energy deviation δ of each particle can be treated as

constant, then the horizontal position of a particle at the

chosen point in the storage ring is:

x =
√

2βxJx cosφx + ηxδ (85)

where ηx is the dispersion.

Hamiltonian Dynamics, Lecture 9 34 Coupled Optics



Final Remarks: The Horizontal Beam Size

Finally, we assume that the angle variables φx of all particles in

the beam are uncorrelated, and that the energy deviation δ is

uncorrelated with the horizontal variables Jx or φx. If all the

above assumptions are valid, then the square of the horizontal

beam size may be written:

σ2
x = βxεx + η2

xσ
2
δ (86)

where

σ2
x = 〈x2〉 (87)

σ2
δ = 〈δ2〉 (88)

In many practical cases, the above assumptions are satisfied

well enough to allow us to calculate the beam size in this way.

However, accelerator physicists are becoming increasingly

ambitious in the systems they design and build, and are

constantly pushing into new regimes. Caution is advised!
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Summary I

Given the transfer matrix R for one periodic cell of a beamline,
and the sigma matrix Σ for the matched distribution:

• The eigenvalues of R are exp(±iµk), where µk are the phase
advances across the cell in each degree of freedom.

• The eigenvectors of R are the same as the eigenvectors of
Σ · S.

• The eigenvectors may be used to construct coupled lattice
functions Bk for coupled optics, which relate the sigma
matrix directly to the bunch emittances.

• The eigenvalues of Σ · S are ±iεk where εk are the beam
emittances.
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Summary II

In terms of the coupled lattice functions and the bunch

emittances, the sigma matrix is given by (46):

Σ =
∑

k=I,II,III

Bkεk (89)

The coupled lattice functions Bk relate the components of the

sigma matrix to the bunch emittances; they are given by (47):

Bk = N · T k ·NT (90)

where the normalising matrix, N is given by (15):

N = E ·Q (91)

where E are the eigenvectors of R (or Σ · S), normalised and

ordered so that E satisfies equation (4):

ET · S · E = iS (92)

The constant matrices Q and T k are given by equations (14)

and (55) respectively.
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Summary III

The bunch emittances are conserved as the bunch is

transported along a beamline, as long as the transport is linear

and symplectic. The lattice functions transform as:

Bk(s1) = R ·Bk(s0) ·RT (93)

where R = R(s0, s1) is the transfer matrix from point s0 to the

point s1 along the (not necessarily periodic) beamline.

Finally, be warned that, as I said at the start, there are many

different ways of describing coupled optics. Unfortunately, no

single approach has yet become standard, so many different

definitions of the coupled lattice functions are in use. When

working on a project involving coupled lattice functions, always

make sure you understand which definitions are in use.
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