Cockcroft Lectures: Intermediate Beam Dynamics for Particle Accelerators

Problem Set 8

A. Wolski \& B. Muratori

May, 2022

1. Write down expressions for the phase-space coordinates $\left(x, p_{x}\right)$ of a single particle in terms of the action-angle variables J_{x} and ϕ_{x} for that particle.
2. Consider a bunch of a large number of particles in which the angle variables for the different particles have a uniform random distribution between 0 and 2π. Show that:

$$
\begin{align*}
\left\langle x^{2}\right\rangle & =\beta_{x} \epsilon_{x} \tag{1}\\
\left\langle x p_{x}\right\rangle & =-\alpha_{x} \epsilon_{x} \tag{2}\\
\left\langle p_{x}^{2}\right\rangle & =\gamma_{x} \epsilon_{x} \tag{3}
\end{align*}
$$

where the brackets $\langle\cdot\rangle$ indicate an average over all particles in the bunch, and the Twiss parameters $\alpha_{x}, \beta_{x}, \gamma_{x}$ relate the action variable to the variables x and p_{x} in the usual way. How is the bunch emittance ϵ_{x} related to the action variables of the particles in the bunch?
3. Using the expressions given in Problem 2 and the relation between the Twiss parameters:

$$
\begin{equation*}
\beta_{x} \gamma_{x}-\alpha_{x}^{2}=1 \tag{4}
\end{equation*}
$$

derive an expression for the emittance in terms of the second-order moments of the bunch distribution.
4. Using your result from Problem 3, show that the eigenvalues $\lambda_{ \pm}$of the matrix $\Sigma \cdot S$ where:

$$
\Sigma=\left(\begin{array}{cc}
\left\langle x^{2}\right\rangle & \left\langle x p_{x}\right\rangle \tag{5}\\
\left\langle x p_{x}\right\rangle & \left\langle p_{x}^{2}\right\rangle
\end{array}\right), \quad S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

are $\lambda_{ \pm}= \pm i \epsilon_{x}$.
5. Consider a 2×2 transfer matrix R given by:

$$
\begin{equation*}
R=I \cos \mu_{x}+S \cdot A_{x} \sin \mu_{x} \tag{6}
\end{equation*}
$$

where I is the 2×2 identity matrix, μ_{x} is a real number, and the matrix A_{x} is constructed from the Twiss parameters:

$$
A_{x}=\left(\begin{array}{ll}
\gamma_{x} & \alpha_{x} \tag{7}\\
\alpha_{x} & \beta_{x}
\end{array}\right)
$$

Show that, if the second-order moments of the beam distribution satisfy equations $(1),(2)$ and (3), then the beam distribution is "matched" to the transfer matrix, i.e. the beam distribution matrix is invariant under the transformation:

$$
\begin{equation*}
\binom{x}{p_{x}} \rightarrow R \cdot\binom{x}{p_{x}} \tag{8}
\end{equation*}
$$

