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What we Learned in the Previous Lecture

In the previous lecture, we considered the dynamics of a

particle moving inside various kinds of electromagnetic field.

Specifically, we looked at the cases of dipole, normal and skew

quadrupole fields, TM010 cavities, and solenoids.

In each case, we solved the equations of motion in the paraxial

approximation. This involves constructing an approximate

Hamiltonian by expanding the exact Hamiltonian to second

order in the dynamical variables.

The Hamiltonian for the fields we considered can be solved in

the paraxial approximation to yield equations of motion that are

linear in the dynamical variables. The solutions to the equations

of motion may be expressed in terms of transfer matrices.
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Course Outline

Part I (Lectures 1 – 5): Dynamics of a relativistic charged

particle in the electromagnetic field of an accelerator beamline.

1. Review of Hamiltonian mechanics

2. The accelerator Hamiltonian in a straight coordinate system

3. The Hamiltonian for a relativistic particle in a general

electromagnetic field using accelerator coordinates

4. Dynamical maps for linear elements

5. Three loose ends: edge focusing; chromaticity; beam

rigidity
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Fringe Fields

We did not so far consider effects that may occur when a

particle moves from a region with one kind of field, to a region

with another kind of field; e.g. when a particle moves from a

field-free region (i.e. a “drift space”) into a dipole field.

Since the electromagnetic fields obey Maxwell’s equations, they

must vary smoothly and continuously in space. In other words,

the transition from a drift space to a dipole cannot be abrupt.

There must be a region of space that is neither drift space nor

dipole field, but something else (usually something more

complicated). This region of space is generally referred to as

the “fringe field”.

It turns out that fringe fields have important effects. However,

their exact description is complicated, and dependent on details

of the magnet design. In this lecture, we shall consider the

effects of fringe fields using very simple approximations.
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Dipole Pole Faces Normal to the Reference Trajectory

From the point of view of the dynamics, the simplest dipole

field to consider is one that is completely independent of x and

y. In this case, the pole faces at the entrance and the exit are

perpendicular to the reference trajectory.
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Dipole Pole Faces Angled to the Reference Trajectory

However, magnet engineers do not like to design or build this

kind of magnet. From their point of view, the simplest kind of

magnet has a rectangular footprint, with the entrance and exit

pole faces parallel to each other.

Hamiltonian Dynamics, Lecture 5 5 Three Loose Ends



Fringe Field for a Dipole

Consider the magnetic field close to the entrance pole face of a
dipole. We consider an arbitrary rotation of the pole face
through angle ψ from the normal to the reference trajectory.

The effect of the fringe field (including the pole face rotation)
is contained within the region 0 < s < ∆s, and is represented by
the magnetic field:

Bx = −B0
y

∆s
tanψ, By = B0

(
s

∆s
−

x

∆s
tanψ

)
, Bs = B0

y

∆s
.

(1)
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Fringe Field for a Dipole

Note that without the rotation of the pole face, the fringe field

is written:

Bx = 0, By = B0
s

∆s
, Bs = B0

y

∆s
. (2)

The vertical field increases linearly from zero at s = 0 to the

full dipole field B0 at s = ∆s; there is a longitudinal component

to the field, dependent on the vertical coordinate, required by

Maxwell’s equations.

The dipole fringe field with pole face rotation (1) is obtained

from the fringe field without any pole face rotation (2) by a

simple rotation, and rescaling the gradient so that the field still

increases from zero to B0 from s = 0 to s = ∆s.
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Vector Potential for a Dipole Fringe Field

The dipole fringe field (1) may be obtained from the vector

potential:

Ax =
1

2

B0

∆s

(
s2 − y2

)
, Ay = 0, As = −

1

2

B0

∆s

(
y2 − x2

)
tanψ.

(3)

We need to be careful in the transition from the field free

region into the fringe field, and from the fringe field into the

main dipole field. This is because the vector potential has a

horizontal component in the fringe field that does not appear in

the field free region or the dipole field. Associated with any

change in the vector potential is a change in the canonical

momentum:

∆px =
q

P0
∆Ax (4)

In this particular case, the change in the vector potential is

second order in the coordinate y, so there are no linear effects,

only (possible) nonlinear effects.
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Dynamics in a Dipole Fringe Field

The horizontal component of the vector potential in a dipole

fringe field (3) leads to nonlinear (higher-order) effects.

However, the longitudinal component has the form of the

potential in quadrupole field, with normalised quadrupole

strength:

k1 = −
q

P0

B0

∆s
tanψ (5)

The vertical focusing comes from the longtudinal component

of the magnetic field that is required by Maxwell’s equations,

and varies linearly with the vertical coordinate. If the pole face

is rotated, the “longitudinal” field now has some horizontal

component, and a particle travelling parallel to the reference

trajectory receives a vertical kick proportional to the vertical

position of the particle.
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Dynamics in a Dipole Fringe Field

The horizontal focusing in the fringe field is really a geometric
effect.

A particle travelling parallel to the reference trajectory but with
some positive horizontal offset does not see the main bending
field of the dipole until some time later than a particle
travelling exactly along the reference trajectory. The result is
that the first particle is no longer travelling parallel to the
reference trajectory: there is an effective deflection proportional
to the horizontal offset of the particle.

Hamiltonian Dynamics, Lecture 5 10 Three Loose Ends



Transfer Matrix for a Dipole Fringe Field

In the absence of other information, we usually consider the

fringe field of a dipole in the limit ∆s→ 0. In this case, the

transfer matrix can be derived directly from that for a “thin”

quadrupole (a quadrupole in the limit of zero length and fixed

integrated gradient):

R =



1 0 0 0 0 0
−K1 1 0 0 0 0

0 0 1 0 0 0
0 0 K1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(6)

where

K1 = −
q

P0
B0 tanψ (7)

Note that for q, B0 and ψ all positive, the fringe field is

horizontally defocusing and vertically focusing.
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Solenoid Fringe Field

As for the dipole, the fringe field for a solenoid is usually
treated in the “hard edge” approximation, in which the extent
of the fringe field approaches zero. In this case, the longitudinal
field at the entrance to the solenoid is a step function:

Bs = B0Θ(s) (8)
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Solenoid Fringe Field

To satisfy Maxwell’s equations, the horizontal and vertical fields

must be Dirac delta functions:

Bs = B0Θ(s), Bx = −
1

2
B0δ(s)x, By = −

1

2
B0δ(s)y (9)

where the delta function is given by:

δ(s) =
dΘ

ds
(10)

and satisfies:

δ(s) = 0 for s 6= 0 (11)

and: ∫ ∞
−∞

δ(s)ds = 1 (12)
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Vector Potential in a Solenoid Fringe Field

The solenoid fringe field (9) can be obtained from the vector

potential:

Ax = −
1

2
B0Θ(s)y (13)

Ay =
1

2
B0Θ(s)x (14)

As = 0 (15)

with the usual relation:

B = ∇×A (16)
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Hamiltonian for a Solenoid Fringe Field

Using the usual accelerator Hamiltonian (in straight

coordinates):

H =
δ

β0
−

√√√√( 1

β0
+ δ

)2

− (px − ax)2 − (py − ay)2 −
1

β2
0γ

2
0
−as (17)

and making the paraxial approximation, we construct the

Hamiltonian for the solenoid fringe field to second order in the

dynamical variables:

H2 =
1

2
(px + ksΘ(s)y)2 +

1

2
(py − ksΘ(s)x)2 +

1

2β2
0γ

2
0
δ2 (18)
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Equations of Motion for a Solenoid Fringe Field

The equations of motion for the horizontal variables are:

dx

ds
=

∂H

∂px
= px + ksΘ(s)y (19)

dpx

ds
= −

∂H

∂x
= ksΘ(s) (py − ksΘ(s)x) (20)

and similarly in the vertical plane:

dy

ds
=

∂H

∂py
= py − ksΘ(s)y (21)

dpy

ds
= −

∂H

∂y
= −ksΘ(s) (px + ksΘ(s)x) (22)

Note that in each of the above equations, the quantity on the

right hand side is finite. This implies that, if we consider an

infinitesimal step ∆s across the fringe field at s = 0, we must

have in the limit ∆s→ 0:

∆x→ 0 ∆y → 0 (23)

∆px → 0 ∆py → 0 (24)
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Transverse Kick from a Solenoid Fringe Field

The results (23) for ∆x and ∆y are as expected, since the
trajectory of the particle must be continuous across the fringe
field. But the results (24) for ∆px and ∆py are surprising, since
we expect the fringe field to cause a non-zero kick: although
the trajectory is continuous, in the approximation we have
used, it need not be smooth. To see this, consider Newton’s
equation of motion with the Lorentz force:

dp̄x

dt
= q (ẏBs − ṡBy) (25)

where p̄x is the horizontal component of the mechanical
momentum. Using the field (9), we have:

dp̄x

dt
= q

(
ẏB0Θ(s) +

1

2
B0ṡδ(s)y

)
(26)

Using ṡ ≈ c and Equation (12) for the integral of the delta
function, it follows that for an infinitesimal step ∆t across the
fringe field in the limit ∆t→ 0:

∆p̄x ≈
1

2
qB0y (27)
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Transverse Kick from a Solenoid Fringe Field

We find from Newton’s equation, combined with the Lorentz

force for the solenoid fringe field (9), that making an

infinitesimal step across the fringe field results in a non-zero

change in transverse momentum:

∆p̄x ≈
1

2
qB0y (28)

However, there is also a non-zero change in the horizontal

component of the vector potential (15):

∆Ax = −
1

2
B0y (29)

Recall that the canonical momentum is the mechanical

momentum plus the product of the charge and the vector

potential. Taking into account the normalisation with respect

to the reference momentum P0:

px ≈
p̄x

P0
+

q

P0
Ax (30)
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Transverse Kick from a Solenoid Fringe Field

It follows from Equation (30) that, in making an infinitesimal

step across the solenoid fringe field, the total change in the

canonical momentum is:

∆px ≈
1

P0
∆p̄x +

q

P0
∆Ax = 0 (31)

where the last step follows from (28) and (29). In other words,

the change in the vector potential cancels the change in the

mechanical momentum, so the change in the canonical

momentum is (close to) zero. This is consistent with the result

(24) that we found from Hamilton’s equations. We have shown

this is the case for the horizontal motion at the entrance to the

solenoid: exactly the same effect happens for the vertical

motion at the entrance, and for the horizontal and vertical

motion at the exit of the solenoid.
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Transfer Matrix for a Solenoid Fringe Field

From Equations (23) and (24), the transfer matrix for a

solenoid fringe field (entrance and exit) is simply the identity

matrix:

R =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(32)

It is important to note that this is only the case when the

canonical momentum px is used as a dynamical variable.

Sometimes, the quantity x′ is used to describe the motion

instead of px: in that case, we do not get a cancellation

between the mechanical kick and the change in the vector

potential, so there is a non-zero change in x′ across the fringe

field, and the transfer matrix will be different from the identity.
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Fringe Fields for Quadrupoles

Quadrupoles also have fringe fields. However, it can be shown

that the effects are higher-order (and are similar to the effects

of sextupoles), and generally quite weak. Nonlinear effects are

beyond the scope of this course, so we do not consider

quadrupole fringe fields any further. Similarly, for purposes of

linear dynamics, the fringe fields of combined function bends

have the same effect (to first order) as the fringe fields of

bending magnets without quadrupole component, but with the

same strength dipole field.
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Transfer Matrices for “Linear” Elements in Accelerators

We have now completed our derivation of transfer matrices for

“linear” elements in accelerator beamlines. These matrices

were obtained from the Hamiltonian for the corresponding

electromagnetic field in the paraxial approximation, and are

valid for small values of the dynamical variables.

You should now be able to write a simple tracking code to

calculate the transport of charged particles along a linear

beamline, including the effects of drift spaces, bending magnets

(with and without quadrupole gradient), dipole fringe fields for

arbitrary pole-face rotations, normal and skew quadrupoles,

TM010 RF cavities, and solenoids. For convenient reference,

the transfer matrices for all these elements are given in an

appendix at the end of this lecture.
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Dispersion: A Reminder

In the transfer matrix for a dipole, we saw terms associated

with the dispersion, i.e. the change in trajectory of a particle

with respect to the energy deviation δ. Recall that the transfer

matrix is:

R =



cosωL sinωL
ω 0 0 0 1−cosωL

ωβ0

−ω sinωL cosωL 0 0 0 sinωL
β0

0 0 1 L 0 0
0 0 0 1 0 0

−sinωL
β0

−1−cosωL
ωβ0

0 0 1 L
β2

0γ
2
0
− ωL−sinωL

ωβ2
0

0 0 0 0 0 1


(33)

where L is the length of the dipole, and ω = k0 is the dipole

field strength normalised with respect to the reference

momentum. The dispersion terms are R16 and R26.
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Energy-Dependent Effects in Quadrupoles

Dispersion is an example of an energy-dependent transverse

effect: it may be viewed as a coupling between the longitudinal

and transverse planes. Quadrupoles also have energy-dependent

transverse effects. This may be seen very easily from the

physical effect of a quadrupole. Consider a set of particles

entering a quadrupole parallel to the reference trajectory. The

higher-energy particles are deflected less strongly by the

quadrupole field than the lower-energy particles, so the focal

length of the quadrupole is dependent on the energy.
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Chromaticity

Chromaticity is the variation in focusing strength of a

quadrupole (or other “linear” element) with the energy of the

particle. The higher the energy of the particle the longer the

focal length.
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Chromaticity

Recall the transfer matrix for a quadrupole:

R =



cosωL sinωL
ω 0 0 0 0

−ω sinωL cosωL 0 0 0 0
0 0 coshωL sinhωL

ω 0 0
0 0 ω sinhωL coshωL 0 0
0 0 0 0 1 L

β2
0γ

2
0

0 0 0 0 0 1


(34)

where

ω =
√
k1 (35)

and k1 is the quadrupole gradient, normalised by the reference

momentum P0.

Where is the chromaticity in the transfer matrix?
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Chromaticity

We lost the chromaticity in a quadrupole when we made the

paraxial approximation in the Hamiltonian. More strictly, we

lost the chromaticity when we made the paraxial approximation

including the longitudinal variables. The full Hamiltonian for a

quadrupole is:

H =
δ

β0
−

√√√√( 1

β0
+ δ

)2

− p2
x − p2

y −
1

β2
0γ

2
0

+
1

2
k1

(
x2 − y2

)
(36)

Expanding the Hamiltonian (36) to second order in all the

dynamical variables (making the paraxial approximation) we

constructed the Hamiltonian:

H2 =
1

2
p2
x +

1

2
p2
y +

1

2
k1x

2 −
1

2
k1y

2 +
1

2β2
0γ

2
0
δ2 (37)

In the second-order Hamiltonian (37) there are no terms that

include transverse and longitudinal variables together. Thus,

there are no energy-dependent transverse effects - so there is

no chromaticity.
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Restoring the Chromaticity to a Quadrupole

Chromaticity is an extremely important effect: in practice, the

behaviour of a beam in a lattice is strongly dependent on the

chromaticity. Is there anything we can do to restore the

chromatic effects in the equations of motion?

The answer is “yes”, but we have to pay a price. We first of all

note that in the full Hamiltonian (36), the longitudinal

coordinate z does not appear at all. Consequently, from

Hamilton’s equations, the energy deviation δ is constant. We

can therefore expand the Hamiltonian to second order in the

transverse variables, while keeping the full dependence on δ:

H2 =
δ

β0
−D +

p2
x

2D
+

p2
y

2D
+

1

2
k1x

2 −
1

2
k1y

2 (38)

where the constant D is given by:

D =

√
1 +

2δ

β0
+ δ2 (39)
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Restoring the Chromaticity to a Quadrupole

Since δ, and hence D are constants, the Hamiltonian (38) leads

to equations of motion that can be solved for the transverse

variables. Expressed as a 4× 4 transfer matrix, the solutions to

the equations of motion are:

~x(s = L) = R̃ · ~x(s = 0) (40)

where:

~x =


x
px
y
py

 R̃ =


cos ω̃L sin ω̃L

Dω̃ 0 0
−Dω̃ sin ω̃L cos ω̃L 0 0

0 0 cosh ω̃L sinh ω̃L
Dω̃

0 0 Dω̃ sinh ω̃L cosh ω̃L


(41)

and:

ω̃ =

√
k1

D
(42)
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Restoring the Chromaticity to a Quadrupole

The longitudinal equation of motion from Hamilton’s equations

with the Hamiltonian (38) is now a little more complicated

than before:

dz

ds
=

1

β0
−

1

2

(
β0

D

)3
(1 + β0δ)

(
2D2

β4
0

+ x2 + y2
)

(43)

However, with the known solutions for x(s) and y(s) from (41),

we can solve the equation of motion (43). The result is not

especially enlightening, and we do not give it explicitly here.
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Some Remarks About Chromaticity

The chromatic effects in other “linear” components can be

treated in the same way as for a quadrupole as long as the

energy deviation δ is constant (which is not generally the case

for an RF cavity). The result is a map that is linear in the

transverse variables, but has a nonlinear dependence on the

energy deviation. For this reason, chromaticity is formally a

“nonlinear” rather than a linear effect (in contrast to the

dispersion, which does appear in the 6× 6 linear transfer matrix

for a bending magnet).

Sometimes people talk about “linear chromaticity”. By this,

they generally mean the linear part of the dependence of the

focusing strength (e.g. ω in the quadrupole map) on the

energy deviation. This is not the same thing as a linear

dependence of the transformation of the dynamical variables

(x, px, etc.) on the energy deviation.

Hamiltonian Dynamics, Lecture 5 31 Three Loose Ends



Beam Rigidity

We have frequently used the reference momentum P0 to

normalise quantities in the linear dynamics we have studied so

far. For example, the normalised field strength of a dipole

magnet is given by:

k0 =
q

P0
B0 (44)

The quantity that appears in the equation of motion in a dipole

is k0, rather than the absolute field strength B0.
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Beam Rigidity

Consider a particle of charge q and mechanical momentum P0

moving in a plane perpendicular to a uniform field B. The

magnitude of the Lorentz force acting on the particle is:

F = qβ0cB (45)

Since the force is always perpendicular to the instantaneous

velocity, the particle must be following a circular trajectory.

The centripetal force is provided by the Lorentz force, and is

given (for general circular motion) by:

F =
P0β0c

ρ
(46)

where ρ is the radius of the particle’s trajectory. Equating the

Lorentz force (45) and the centripetal force (46), we find:

Bρ =
P0

q
(47)
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Beam Rigidity

A particle of charge q moving in a uniform field B with

momentum P0 follows a circular trajectory with radius ρ given

by (47):

Bρ =
P0

q
(48)

In other words, the product of the field and the radius is a

function only of the particle momentum and charge. We also

notice that the particular combination P0/q is exactly that

which appears in the normalisation of many physical quantities

in beam dynamics.

The quantity Bρ, called the beam rigidity, is often used instead

of P0/q. Note that the beam rigidity does not refer to a

specific field strength or radius of curvature of the trajectory: it

should be thought of as simply another way of writing the

reference momentum P0.
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Beam Rigidity

The beam rigidity is useful because it gives a more intuitive way

of writing many formulae than using the reference momentum.

For example, the curvature 1/ρ0 of the trajectory of a particle

with the reference momentum P0 in a field of strength B0 is:

1

ρ0
=
qB0

P0
=
B0

Bρ
(49)

For a high-energy particle (E0 � m0c
2), the beam rigidity can

be conveniently calculated from:

Bρ[Tm] ≈
E0[eV]

c[m/s]
(50)

where the energy E0 is expressed in electron-volts, the speed of

light is expressed in meters per second, and the beam rigidity

Bρ is given in tesla-meters.
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Summary

The entrance and exit faces of dipoles are often made parallel
so that the beam does not enter or exit the magnet normal to
the face. The effect of these pole face rotations is to introduce
an additional focusing, that acts in both the horizontal plane
(because of the geometry of the magnet) and the vertical plane
(because of the fringe field of the magnet).

The fringe field of a solenoid results in a kick in the mechanical
momenta. However, in canonical coordinates, this kick is
cancelled by the change in the magnetic vector potential when
entering or exiting the solenoid. Thus, the transfer matrix for a
solenoid fringe field in canonical coordinates is the identity.

Quadrupoles have chromatic effects which, strictly speaking,
are nonlinear; but ought not be ignored.

The beam rigidity is often used as an alternative to the
reference momentum.

Hamiltonian Dynamics, Lecture 5 36 Three Loose Ends



Appendix: Transfer Matrices

The transfer matrix for a drift space of length L is:

R =



1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L

β2
0γ

2
0

0 0 0 0 0 1


(51)

Hamiltonian Dynamics, Lecture 5 37 Three Loose Ends



Appendix: Transfer Matrices

The transfer matrix for a dipole of length L and vertical field

strength B0 is:

R =



cosωL sinωL
ω 0 0 0 1−cosωL

ωβ0

−ω sinωL cosωL 0 0 0 sinωL
β0

0 0 1 L 0 0
0 0 0 1 0 0

−sinωL
β0

−1−cosωL
ωβ0

0 0 1 L
β2

0γ
2
0
− ωL−sinωL

ωβ2
0

0 0 0 0 0 1


(52)

where ω = k0 = q
P0
B0.
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Appendix: Transfer Matrices

The transfer matrix for a combined-function dipole of length L
and vertical field strength B0 is:

R =



cosωxL sinωxL
ωx

0 0 0 k0

β0

(1−cosωxL)
ω2
x

−ωx sinωxL cosωxL 0 0 0 k0

β0

sinωxL
ωx

0 0 coshωyL
sinhωyL

ωy
0 0

0 0 ωy sinhωyL coshωyL 0 0

−k0

β0

sinωxL
ωx

−k0

β0

(1−cosωxL)
ω2
x

0 0 1 L
β2

0γ
2
0

− k2
0

β2
0

(ωxL−sinωxL)
ω3
x

0 0 0 0 0 1


(53)

where:

ωx =
√
k2

0 + k1, ωy =
√
k1 (54)

The field is:

Bx = b2
y

r0
, By = b1 + b2

x

r0
, Bs = 0 (55)

and the normalised field strengths are:

k0 =
q

P0
b1, k1 =

q

P0

b2
r0

(56)
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Appendix: Transfer Matrices

In the “hard edge” approximation, the transfer matrix for a

dipole fringe field (exit and entrance) is:

R =



1 0 0 0 0 0
−K1 1 0 0 0 0

0 0 1 0 0 0
0 0 K1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(57)

where

K1 = −
q

P0
B0 tanψ (58)

B0 is the dipole field strength, and ψ is the rotation angle of

the pole face. A dipole with a “rectangular” footprint has

parallel pole faces, with the rotation angle ψ positive for each

pole face.
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Appendix: Transfer Matrices

The transfer matrix for a normal quadrupole of length L is:

R =



cosωL sinωL
ω 0 0 0 0

−ω sinωL cosωL 0 0 0 0
0 0 coshωL sinhωL

ω 0 0
0 0 ω sinhωL coshωL 0 0
0 0 0 0 1 L

β2
0γ

2
0

0 0 0 0 0 1


(59)

where

ω =
√
k1, k1 =

q

P0

b2
r0

(60)

and the quadrupole field is:

Bx = b2
y

r0
, By = b2

x

r0
, Bs = 0 (61)
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Appendix: Transfer Matrices

The transfer matrix for a skew quadrupole of length L is:
1
2 (cosωL+ coshωL) 1

2ω (sinωL+ sinhωL) 1
2 (cosωL− coshωL) 1

2ω (sinωL− sinhωL) 0 0
−1

2
ω (sinωL− sinhωL) 1

2 (cosωL+ coshωL) −1
2
ω (sinωL+ sinhωL) 1

2 (cosωL− coshωL) 0 0
1
2 (cosωL− coshωL) 1

2ω (sinωL− sinhωL) 1
2 (cosωL+ coshωL) 1

2ω (sinωL+ sinhωL) 0 0
−ω

2 (sinωL+ sinhωL) 1
2 (cosωL− coshωL) −ω

2 (sinωL− sinhωL) 1
2 (cosωL+ coshωL) 0 0

0 0 0 0 1 L
β2

0
γ2

0

0 0 0 0 0 1


(62)

where

ω =
√
k1s, k1s =

q

P0

a2

r0
(63)

and the quadrupole field is:

Bx = a2
x

r0
, By = −a2

y

r0
, Bs = 0 (64)
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Appendix: Transfer Matrices

The transfer matrix for a solenoid of length L is:

R =



cos2 ωL sin 2ωL
2ω

1
2 sin 2ωL sin2 ωL

ω 0 0
ω
2 sin 2ωL cos2 ωL −ω sin2 ωL 1

2 sin 2ωL 0 0

−1
2 sin 2ωL −sin2 ωL

ω cos2 ωL sin 2ωL
2ω 0 0

ω sin2 ωL −1
2 sin 2ωL −ω2 sin 2ωL cos2 ωL 0 0

0 0 0 0 1 L
β2

0γ
2
0

0 0 0 0 0 1


(65)

where

ω = ks =
1

2

q

P0
B0 (66)

and B0 is the solenoid field strength. In the “hard edge”

approximation, the transfer matrix for the fringe field of a

solenoid is the identity.
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Appendix: Transfer Matrices

The transfer matrix for a TM010 RF cavity of length L = π/k
(where k = 2πfRF/c for RF frequency fRF ) is:

R =



cosψ⊥
L
ψ⊥

sinψ⊥ 0 0 0 0

−ψ⊥
L

sinψ⊥ cosψ⊥ 0 0 0 0
0 0 cosψ⊥

L
ψ⊥

sinψ⊥ 0 0

0 0 −ψ⊥
L

sinψ⊥ cosψ⊥ 0 0
0 0 0 0 cosψ‖

1
β2

0γ
2
0

L
ψ‖

sinψ‖

0 0 0 0 −β2
0γ

2
0
ψ‖
L

sinψ‖ cosψ‖


(67)

where:

ψ⊥ =

√
πα cosφ0

2
ψ‖ =

√
πα cosφ0

γ0β0
(68)

and, for “RF voltage” V̂ (which includes the transit time

factor):

α =
qV̂

P0c
(69)
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