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What we Learned in the Previous Lecture

In the previous lecture, we derived a Hamiltonian for the

motion of a particle through an accelerator.

This “accelerator Hamiltonian” can be applied for a general

electromagnetic field, allows a curved reference trajectory, and

uses dynamical variables that remain small for particles

following a trajectory close to the reference trajectory.

We applied the accelerator Hamiltonian to the case of a dipole

magnet. To obtain a linear transfer map, we made an

approximation by expanding the Hamiltonian as a power series

to second order in the dynamical variables.

There are several interesting effects arising from the

Hamiltonian for a dipole magnet: these include dispersion

(variation of the bending angle with the energy of the particle)

and weak focusing.
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Course Outline

Part I (Lectures 1 – 5): Dynamics of a relativistic charged

particle in the electromagnetic field of an accelerator beamline.

1. Review of Hamiltonian mechanics

2. The accelerator Hamiltonian in a straight coordinate

system

3. The Hamiltonian for a relativistic particle in a general

electromagnetic field using accelerator coordinates

4. Transfer maps for linear elements

5. Three loose ends: edge focusing; chromaticity; beam

rigidity.
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Goals of This Lecture

In this lecture, we shall continue our derivation of transfer

maps for “linear” beamline elements.

To the drift space and dipole, we shall add the quadrupole, the

RF cavity, and the solenoid.

Note that all elements are in fact nonlinear. By “linear”

elements, we mean those for which the principle effects on the

beam may be obtained by expanding the Hamiltonian to second

order in the dynamical variables. We shall make extensive use of

this approximation - usually called the paraxial approximation.
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Magnetic Field Inside a Quadrupole

Recall the magnetic field inside a normal quadrupole magnet:

Bx = b2
y
r0
, By = b2

x
r0
.
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Magnetic Field Inside a Quadrupole

The field inside a normal quadrupole magnet in Cartesian

coordinates may be written:

Bx = b2
y

r0
By = b2

x

r0
Bs = 0 (1)

Note that on the axis of the quadrupole, the field strength is

zero. Therefore, we can choose the reference trajectory to lie

along the axis, in which case there is no curvature: we can

work in a straight coordinate system.

The above field may be derived from the potential:

Ax = 0 Ay = 0 As = −
1

2

b2
r0

(
x2 − y2

)
(2)
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Hamiltonian Inside a Quadrupole

The Hamiltonian describing the motion inside a quadrupole,

using the usual accelerator variables, is:

H =
δ

β0
−

√√√√( 1

β0
+ δ

)2
− p2x − p2y −

1

β20γ
2
0
− as (3)

The longitudinal component as of the normalised vector

potential is:

as = q
As

P0
= −

1

2

q

P0

b2
r0

(
x2 − y2

)
(4)

where q is the charge on the particle, and P0 is the reference

momentum.

For convenience, we define the normalised quadrupole gradient:

k1 =
q

P0

b2
r0

(5)
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Hamiltonian Inside a Quadrupole

In terms of the normalised quadrupole gradient (5) the

Hamiltonian can be written:

H =
δ

β0
−

√√√√( 1

β0
+ δ

)2
− p2x − p2y −

1

β20γ
2
0
+

1

2
k1
(
x2 − y2

)
(6)

Expanding the Hamiltonian (6) to second order in the

dynamical variables (making the paraxial approximation) we

construct the Hamiltonian:

H2 =
1

2
p2x +

1

2
p2y +

1

2
k1x

2 −
1

2
k1y

2 +
1

2β20γ
2
0
δ2 (7)

Note that this looks very much like the harmonic oscillator

equation: for k1 > 0 we have a “focusing” potential in x, and a

“defocusing” potential in y. In z there is no focusing.
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Transfer Matrix for a Quadrupole

Solving the equations of motion for the Hamiltonian (7) we

find the transfer matrix for a quadrupole of length L (k1 > 0):

R =



cosωL sinωL
ω 0 0 0 0

−ω sinωL cosωL 0 0 0 0
0 0 coshωL sinhωL

ω 0 0
0 0 ω sinhωL coshωL 0 0
0 0 0 0 1 L

β20γ
2
0

0 0 0 0 0 1


(8)

where

ω =
√
k1 (9)

Note that the field, if focusing in x is defocusing in y, and

vice-versa. This is a direct consequence of the constraints on

the magnetic field from Maxwell’s equations: it is not possible

to build a quadrupole that focuses or defocuses in both

transverse planes simultaneously.
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Magnetic Field in a Skew Quadrupole

A skew quadrupole is obtained from a normal quadrupole by

rotating the magnet 90◦ about the magnetic axis.

The skew multipole field components are given by the cn
coefficients in the multipole expansion:

By + iBx =
∞∑
n=1

(bn+ ian)

(
x+ iy

r0

)n−1

(10)

For a skew quadrupole, all coefficients are zero except for a2:

Bx = a2
x

r0
By = −a2

y

r0
(11)

The magnetic vector potential is given by:

Ax = 0 Ay = 0 As = a2xy (12)
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Hamiltonian for a Skew Quadrupole

If we define:

k1s = −
q

P0

a2
r0

(13)

where P0 is the reference momentum, and r0 is the reference
radius of the magnet, then the normalised vector potential is:

as = −k1sxy (14)

and the Hamiltonian for a skew quadrupole is:

H =
δ

β0
−

√√√√( 1

β0
+ δ

)2
− p2x − p2y −

1

β20γ
2
0
+ k1sxy (15)

Making the paraxial approximation, we find the second-order
Hamiltonian:

H2 =
1

2
p2x +

1

2
p2y + k1sxy+

1

2β20γ
2
0
δ2 (16)

Note the term in xy: this leads to coupling of the horizontal
and vertical motion. The skew quadrupole gives a horizontal
kick proportional to the vertical offset of the particle, and
vice-versa.
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Transfer Matrix for a Skew Quadrupole

Hamilton’s equations with the second-order skew quadrupole

Hamiltonian (16) may be solved as for the normal quadrupole.

The resulting map is linear, and so it may be written as a

transfer matrix, R (for k1s > 0):


1
2 (cosωL+ coshωL) 1

2ω (sinωL+ sinhωL) 1
2 (cosωL− coshωL) 1

2ω (sinωL− sinhωL) 0 0
−1

2
ω (sinωL− sinhωL) 1

2 (cosωL+ coshωL) −1
2
ω (sinωL+ sinhωL) 1

2 (cosωL− coshωL) 0 0
1
2 (cosωL− coshωL) 1

2ω (sinωL− sinhωL) 1
2 (cosωL+ coshωL) 1

2ω (sinωL+ sinhωL) 0 0
−ω

2 (sinωL+ sinhωL) 1
2 (cosωL− coshωL) −ω

2 (sinωL− sinhωL) 1
2 (cosωL+ coshωL) 0 0

0 0 0 0 1 L
β2
0
γ2
0

0 0 0 0 0 1


(17)

where

ω =
√
k1s (18)
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Electromagnetic Fields in an RF Cavity

Now we know how to focus the beam horizontally (dipole, or

quadrupole with k1 > 0) and vertically (quadrupole with k1 < 0).

But nothing we have seen so far produces any longitudinal

focusing.

If we want to control the bunch size in all three dimensions,

some kind of longitudinal focusing will be necessary.

This can be provided by an RF cavity.
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Electromagnetic Fields in an RF Cavity

An RF cavity contains an

electromagnetic field that has a

sinusoidal dependence on time.

The dependence of the field strength

on the spatial coordinates (x, y, s) is in

general quite complicated, but in

simple cases it can be broken down

into a set of modes – just as the

magnetic field in a multipole magnet

can be broken down into a set of

multipoles.

For the simplest RF cavity, we only

need consider a single mode – the

TM010 mode.

RF cavity.
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Electromagnetic Fields in an RF Cavity

Superconducting 9-cell RF cavity.
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The TM010 Mode in an RF Cavity

Let us assume a simple cylindrical RF cavity, with radius ρ0.

In the TM010 mode in cylindrical cavity, the electric field has
components in cylindrical coordinates:

Eρ = 0 Eϕ = 0 Es = ÊsJ0(kρ) sin (ωRFt+ ϕ0) (19)

where ρ =
√
x2 + y2, ωRF is the RF frequency, and ϕ0 is an

arbitrary phase, and J0 is a Bessel function of the first kind.

The magnetic field is:

Bρ = 0 Bϕ =
k

ω
ÊsJ1 (kρ) cos (ωRFt+ ϕ0) Bs = 0 (20)

It can be shown that for ωRF/k = c, the above fields satisfy
Maxwell’s equations, so they are valid electromagnetic fields.

We must also satsify the boundary conditions on the electric
and magnetic fields at the walls of the cavity.
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The TM010 Mode in an RF Cavity

Bessel functions are solutions of the differential equation:

ξ2
d2Jn

dξ2
+ ξ

dJn

dξ
+ (ξ2 − n2)Jn = 0 (21)

for real n. Note that J0(ξ) = 0 for ξ ≈ 2.405.
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The TM010 Mode in an RF Cavity

If the cavity consists of a conducting cylinder of radius ρ0 with

axis along the reference trajectory, then the boundary

conditions on the electric field require the longitudinal

component Es to vanish at ρ = ρ0.

Hence, the frequency of the electromagnetic field in the cavity

is determined by the cavity radius:

kρ0 ≈ 2.405 (22)

Since the function J0(ξ) has multiple zeroes, there are

(infinitely) many other modes that may exist in the cavity.

These higher-order modes have undesirable effects: significant

efforts are made to suppress or “damp” higher-order modes in

RF cavities in accelerators..
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The TM010 Mode in an RF Cavity

Note that if a particle is inside the cavity at t = 0 and the RF
phase is ϕ0 = 0, then the particle is accelerated by the
longitudinal electric field Es.

The TM010 mode is sometimes called the accelerating mode.

Note also that only the magnetic field has a transverse
component, but that the longitudinal component is zero: hence
the name “TM” (for “transverse magnetic”). The mode
numbers (0,1,0) refer to the azimuthal, radial, and longitudinal
directions, respectively.
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The Hamiltonian in a TM010 RF Cavity

The TM010 mode fields may be derived from the

time-dependent magnetic vector potential:

Ax = 0 Ay = 0 As =
Ês

ω
J0(kρ) cos (ωRFt+ ϕ0) (23)

In the accelerator Hamiltonian, we use the path length s as the

independent variable, rather than the time t. The relationship

between the two involves the dynamical variable z:

ct =
s

β0
− z (24)

Therefore, we can write the Hamiltonian in the TM010 mode:

H =
δ

β0
−

√√√√( 1

β0
+ δ

)2
− p2x − p2y −

1

β20γ
2
0
−
q

P0

Ês

ω
J0(kρ) cos

(
k

β0
s− kz+ ϕ0

)
(25)

where (for the fields to satisfy Maxwell’s equations) ωRF/k = c.
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The Hamiltonian in a TM010 RF Cavity

The Hamiltonian (25) has an unpleasant feature that we have

so far managed to avoid: it has an explicit dependence on the

independent variable s.

This is allowed, but in this case makes the equations of motion

very difficult to solve, and the paraxial approximation does not

get us out of trouble.
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The Hamiltonian in a TM010 RF Cavity

To simplify the problem, we therefore average the Hamiltonian

in s over the length of the cavity:

⟨H⟩ =
1

L

∫ L/2
−L/2

Hds (26)

where L is the length of the cavity.

The fields we have written down in (19) and (20) have no

dependence on s, so we can in principle make the cavity any

length we like.

However, for technical reasons, it is usual to make the cavity

length L = π/k, i.e. half the wavelength of radiation of

frequency ωRF.
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The Hamiltonian in a TM010 RF Cavity

Using L = π/k, we can perform the integral in (26) and we find:

⟨H⟩ =
δ

β0
−

√√√√( 1

β0
+ δ

)2
− p2x − p2y −

1

β20γ
2
0
−
α

π
J0(kρ) cos (ϕ0 − kz)

(27)

where

α = π
q

P0

Ês

ωRF
T =

qÊsL

P0c
T with T =

2β0
π

sin

(
π

2β0

)
(28)

T is called the transit time factor

Normally, we define the cavity voltage, V̂ such that:

V̂

L
= ÊsT (29)

so:

α =
qV̂

P0c
(30)
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The Hamiltonian in a TM010 RF Cavity

Making the paraxial approximation, we find the Hamiltonian:

⟨H2⟩ =
1

2
p2x +

1

2
p2y +

α

4π
cos(ϕ0)k

2
(
x2 + y2

)
−

α

π
sin(ϕ0)kz+

α

2π
cos(ϕ0)k

2z2 +
δ2

2β20γ
2
0

(31)

As usual, we can understand some important properties of the
dynamics by inspection of the Hamiltonian.

Note first the transverse focusing term: the cavity is focusing in
both the horizontal plane and the vertical plane simultaneously.

This is something we could not achieve by the use of static
magnetic fields. In the RF cavity, it arises from the azimuthal
component of the magnetic field in the TM010 mode.

To make use of the transverse focusing, we have to choose a
phase ϕ0 close to zero.
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The Hamiltonian in a TM010 RF Cavity

For an RF cavity, the Hamiltonian in the paraxial approximation

is (31):

⟨H2⟩ =
1

2
p2x +

1

2
p2y +

α

4π
cos(ϕ0)k

2
(
x2 + y2

)
−

α

π
sin(ϕ0)kz+

α

2π
cos(ϕ0)k

2z2 +
δ2

2β20γ
2
0

Note next the appearance of a term linear in z: this will result

in a change in the energy deviation independent of z, as long as

the phase ϕ0 ̸= 0 (and ϕ0 ̸= π). This is the term that describes

the acceleration of the particle.

Finally, note the term quadratic in z: this is the longitudinal

focusing we were looking for.
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Transfer Map for a TM010 RF Cavity

Solving the equations of motion in the transverse plane, we find

that the solutions have zeroth-order as well as first-order terms:

x⃗(L) = Rx⃗(0) + m⃗ (32)

The transfer matrix R is given by:

R =



cos(ψ⊥)
L
ψ⊥

sin(ψ⊥) 0 0 0 0

−ψ⊥

L
sin(ψ⊥) cos(ψ⊥) 0 0 0 0
0 0 cos(ψ⊥)

L
ψ⊥

sin(ψ⊥) 0 0

0 0 −ψ⊥

L
sin(ψ⊥) cos(ψ⊥) 0 0

0 0 0 0 cos(ψ∥)
1

β2
0γ

2
0

L
ψ∥

sin(ψ∥)

0 0 0 0 −β2
0γ

2
0
ψ∥

L
sin(ψ∥) cos(ψ∥)


(33)

where:

ψ⊥ =

√
πα cos(ϕ0)

2
ψ∥ =

√
πα cos(ϕ0)

γ0β0
(34)
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Transfer Map for a TM010 RF Cavity

The zeroth-order transverse terms in the solutions to the

equations of motion are all identically zero. The zeroth-order

longitudinal terms are:

mz =
2

π
L sin2

(
ψ∥
2

)
tan(ϕ0) (35)

mδ = α
sin(ψ∥)

ψ∥
sin(ϕ0) (36)

For small α (high energy particle in a cavity with a weak field),

the map for the energy error δ becomes:

∆δ ≈
qV̂

P0c

(
sin(ϕ0)− kz0 cos(ϕ0)

)
(37)

where z0 = z(0).
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Vector Potential and Hamiltonian for a Solenoid

Solenoids are important components in accelerators. For
example, detectors in colliders are often inside strong solenoids.

A solenoid has a uniform magnetic field in the longitudinal
direction:

Bx = 0, By = 0, Bs = B0. (38)

It is not possible to derive this field from a vector potential
having zero transverse components. A suitable potential is:

Ax = −
1

2
B0y, Ay =

1

2
B0x, As = 0. (39)

This leads to the Hamiltonian:

H =
δ

β0
−

√√√√( 1

β0
+ δ

)2
− (px+ ksy)

2 − (py − ksx)
2 −

1

β20γ
2
0

(40)

where the normalised solenoid field strength ks is given by:

ks =
1

2

q

P0
B0 (41)
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Second-Order Hamiltonian for a Solenoid

The fact that the vector potential has non-zero transverse
components (unlike the other linear elements we have looked
at) means that we have to be particularly careful with the
meaning of the canonical momenta px and py.

But let us proceed with solving the equations of motion in the
Hamiltonian (40), which we do by making the usual paraxial
approximation:

H2 =
1

2
p2x+

1

2
p2y+

1

2
k2sx

2+
1

2
k2s y

2−
1

2
ksxpy+

1

2
kspxy+

δ2

2β20γ
2
0

(42)

Note the terms in x2 and y2: a solenoid provides horizontal and
vertical focusing, rather than focusing in one plane and
defocusing in the other.

Note also the coupling terms in xpy and pxy: motion lying
initially in just one plane becomes (at least partially)
transferred into the other plane.
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Transfer Matrix for a Solenoid

We can solve the equations of motion derived from the

Hamiltonian (42).

The resulting map can be expressed as a transfer matrix:

R =



cos2(ωL) sin(2ωL)
2ω

1
2 sin(2ωL) sin2(ωL)

ω 0 0
ω
2 sin(2ωL) cos2(ωL) −ω sin2(ωL) 1

2 sin(2ωL) 0 0

−1
2 sin(2ωL) −sin2(ωL)

ω cos2(ωL) sin(2ωL)
2ω 0 0

ω sin2(ωL) −1
2 sin(2ωL) −ω

2 sin(2ωL) cos2(ωL) 0 0

0 0 0 0 1 L
β20γ

2
0

0 0 0 0 0 1


(43)

where:

ω = ks =
1

2

q

P0
B0 (44)
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Combined Function Magnets

Multipole fields can be superposed on each other. This may

help to reduce the length (and cost) of a beamline, but can

also help to improve the dynamical properties of a lattice.

In the multipole field expansion:

By + iBx =
∞∑
n=1

(bn+ ian)

(
x+ iy

r0

)n−1

(45)

superposed fields are described by having more than one

non-zero coefficient bn and/or an.

A magnet with superposed magnetic fields is generally called a

“combined function” magnet.

Examples of combined function magnets widely used in

accelerators are dipoles (bending magnet) with superposed

quadrupole fields, and sextupoles with superposed skew

quadrupole fields.
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Combined Function Magnets

For linear dynamics, the most important combined function

magnets are dipoles with superposed quadrupole fields.

In Cartesian coordinates, the field is:

By = b1 + b2
x

r0
, Bx = b2

y

r0
, Bz = 0. (46)

In bending magnets, we generally want to use a curved

reference trajectory; however, using curvilinear coordinates

complicates the description of the magnetic field in a combined

function bend.
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Combined Function Magnets

The magnetic field in a combined function bend may be

derived from the vector potential:

Ax = 0 (47)

Ay = 0 (48)

As = −B0

(
x−

hx2

2(1 + hx)

)

−B1

(
1

2

(
x2 − y2

)
−
h

6
x3 +

h2

24

(
4x4 − y4

)
+ · · ·

)
(49)

Note that the higher-order terms (x3, x4, y4 etc.) arise from

the curvature of the reference trajectory.

The higher-order terms are important for nonlinear dynamics,

but do not contribute to the linear effects.
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Hamiltonian for a Combined Function Bend

Using the vector potential (49) in the Hamiltonian, and making

the paraxial approximation (expanding to second order) we

have:

H2 =
1

2
p2x+

1

2
p2y+(k0−h)x+

1

2
(hk0+k1)x

2−
1

2
k1y

2−
h

β0
xδ−

δ2

2β20γ
2
0

(50)

where the normalised field strengths are defined as usual:

k0 =
q

P0
b1, k1 =

q

P0

b2
r0

(51)

The effect of the superposed gradient k1 in the Hamiltonian is

as expected: it simply provides additional transverse focusing.
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Transfer Map for a Combined Function Bend

Hamilton’s equations with the Hamiltonian (50) can be solved.

In the horizontal plane, the solutions are:

x(s) = x(0) cos(ωxs) + px(0)
sin(ωxs)

ωx
+

(
δ(0)

h

β0
+ h− k0

)
(1− (cosωxs))

ω2
x

(52)

px(s) = −x(0)ωx sin(ωxs) + px(0) cos(ωxs) +

(
δ(0)

h

β0
+ h− k0

)
sin(ωxs)

ωx
(53)

where:

ωx =
√
hk0 + k1 (54)
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Transfer Map for a Combined Function Bend

In the vertical plane, the map for the combined function bend

is:

y(s) = y(0) cosh(ωys) + py(0)
sinh(ωys)

ωy
(55)

py(s) = y(0)ωy sinh(ωys) + py(0) cosh(ωys) (56)

where

ωy =
√
k1 (57)

The map in the vertical plane for a combined function bend is

the same as for a quadrupole: the only focusing in the vertical

plane comes from the quadrupole gradient.
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Transfer Map for a Combined Function Bend

In the longitudinal plane, the solutions are:

z(s) = z(0)− x(0)
h

β0

sin(ωxs)

ωx
− px(0)

h

β0

(1− cos(ωxs))

ω2
x

+ δ(0)
s

β20γ
2
0

−
(
δ(0)

h

β0
+ h− k0

)
h

β0

(ωxs− sin(ωxs))

ω3
x

(58)

δ(s) = δ(0) (59)
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A Word About Fringe Fields

So far, we have only considered the dynamics of a particle
within a given electromagnetic field: we have not thought
about how to get particles in and out of the fields.

However, Maxwell’s equations forbid abrupt changes in
magnetic fields: there has to be some “transition region”
within which there are non-zero fields that are not described by
the usual multipole formulae.

The transition regions at either end of a magnet are usually
called the “fringe fields”.

Fringe fields have significant, and sometimes complicated,
effects. For linear dynamics, the most important fringe fields
are those at the ends of dipoles and solenoids.

Fringe fields at the ends of quadrupoles lead to (usually small)
higher-order effects.
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A Word About Fringe Fields

The precise effects of fringe fields depend on the design details

of the magnet, e.g. the gap between the poles in a dipole.

To do things properly, one should construct the transfer map

from a detailed field description. This often requires significant

effort, and the techniques involved are beyond the scope of this

course.

However, in many cases, we can make simple approximations

that provide a good description of the gross effects.

These approximations are one of the topics covered in the next

lecture.
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Summary

We have now derived linear transfer maps for:

• separated and combined function dipoles

• solenoids

• normal and skew quadrupoles

• RF cavities

For each of these elements, we made the paraxial

approximation by expanding the Hamiltonian to second order in

the dynamical variables. This allowed us to find a linear map

for each element. The linear map may be expressed as a

transfer matrix.

Linear Dynamics, Lecture 4 39 Linear Transfer Maps


