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What we Learned in the Previous Lecture

In the previous lecture, we derived a Hamiltonian for the
motion of a particle through an electromagnetic field, with
dynamical variables appropriate for a particle accelerator.

The dynamical variables are defined so that for particles close
to the reference trajectory, and with energy close to the
reference energy, the values of the dynamical variables should
remain small as the particle moves through the accelerator.

Since the dynamical variables take small values, we can make
approximations to the Hamiltonian to construct linear maps.

We saw how the technique of approximating the Hamiltonian
could be applied to find a symplectic map for a field-free region
(a drift space).

So far we have assumed that the reference trajectory is a
straight line.
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Course Outline

Part I (Lectures 1 – 5): Dynamics of a relativistic charged

particle in the electromagnetic field of an accelerator beamline.

1. Review of Hamiltonian mechanics

2. The accelerator Hamiltonian in a straight coordinate

system

3. The Hamiltonian for a relativistic particle in a general

electromagnetic field using accelerator coordinates

4. Transfer maps for linear elements

5. Three loose ends: edge focusing; chromaticity; beam

rigidity.
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Goals of This Lecture

In this lecture, we shall see how to modify the Hamiltonian to

deal with cases where the reference trajectory is curved.

This will allow us to deal with dipole magnets, in which all

charged particles follow curved paths.

Using a curved reference trajectory in dipole magnets allows us

to maintain small values for the dynamical variables, even

where the deflection from the dipole is large. This means we

can continue to use series expansion approximations for the

Hamiltonian in such cases.

Ultimately, we shall derive the linear transfer map (transfer

matrix) for a dipole.
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Curved Reference Trajectories

The first step is to define some appropriate curvilinear

coordinates.

The original (Cartesian)

coordinates (x, y, z) are related to

the new coordinates (X,Y, S) as

follows:

x = (ρ+X) cos

(
S

ρ

)
− ρ (1)

y = Y (2)

z = (ρ+X) sin

(
S

ρ

)
(3)
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Curved Reference Trajectories

The required transformation of coordinates can be derived from

a mixed-variable generating function.

Using the same mixed-variable generating function to derive

the conjugate momenta in the new coordinate system ensures

that the transformation is canonical.

An appropriate mixed-variable generating function is:

F3(X, px, Y, py, S, pz) = −
[
(ρ+X) cos

(
S

ρ

)
− ρ

]
px − Y py −

[
(ρ+X) sin

(
S

ρ

)]
pz

(4)

The old and new coordinates and momenta are related by:

xi = −
∂F3

∂pi
Pi = −

∂F3

∂Xi
(5)
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Curved Reference Trajectories

The coordinates transform as

required:

x = (ρ+X) cos

(
S

ρ

)
− ρ (6)

y = Y (7)

z = (ρ+X) sin

(
S

ρ

)
(8)

The new transverse momenta are

given by:

PX = px cos

(
S

ρ

)
+ pz sin

(
S

ρ

)
(9)

PY = py (10)
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Curved Reference Trajectories

The curvature of the trajectory has a surprising effect on the

longitudinal component of the momentum: PS is not just the

tangential component of the momentum in Cartesian

coordinates!

PS = pz

(
1+

X

ρ

)
cos

(
S

ρ

)
− px

(
1+

X

ρ

)
sin

(
S

ρ

)
(11)

To complete the transformation, we also need to express the

components of the vector potential in the new coordinate

system:

AX = Ax cos

(
S

ρ

)
−Az sin

(
S

ρ

)
(12)

AY = Ay (13)

AS = Az cos

(
S

ρ

)
+Ax sin

(
S

ρ

)
(14)
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The Hamiltonian in a Curved Reference Trajectory

What form does the Hamiltonian take in the new coordinate

system?

Recall the general expression for the Hamiltonian for a

relativistic particle in Cartesian coordinates, in an

electromagnetic field:

H =
√
(p− qA)2 c2 +m2c4 + qϕ (15)

The transformation into “accelerator variables” in a curvilinear

coordinate system follows exactly the same lines as the

transformations in a straight coordinate system...

...the only difference is that when we change the independent

variable from t to s (and switch the Hamiltonian from H to

−PS), we pick up a factor 1 + x/ρ from equation (11).
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The Hamiltonian in a Curved Reference Trajectory

The result – our final “Accelerator Hamiltonian” – is:

H = − (1 + hx)

√√√√( 1

β0
+ δ −

qϕ

P0c

)2
− (px − ax)

2 − (py − ay)
2 −

1

β2
0γ

2
0

− (1 + hx) as +
δ

β0
(16)

where we have (as usual) renamed our variables so as to tidy

up the notation; and we have defined the “curvature”:

h =
1

ρ
(17)

Note that, from the figures shown in the previous slides, the

curvature h is positive for a bend moving towards the negative

x direction. This is simply a convention.

We can now write down the equations of motion, with a curved

reference trajectory, for a relativistic particle moving through

any field for which we know the potentials ϕ and a.
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Electromagnetic Fields

Before writing down and solving the equations of motion for a

particle travelling through various kinds of magnet, RF cavity

etc., we should know something about the fields generated by

these devices.

Recall that the fields are the derivatives of the potentials:

E = −∇ϕ−
∂A

∂t
(18)

B = ∇×A (19)

Allowed physical fields must be solutions of Maxwell’s

equations...
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Electromagnetic Fields

James Clerk Maxwell, 1831-1879

∇ ·D = ρ ∇ ·B = 0

∇×H−
∂D

∂t
= J ∇× E+

∂B

∂t
= 0 (20)

D = ϵE B = µH
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Magnetic Multipole Fields

Finding solutions to Maxwell’s equations for a given set of

boundary conditions is in general no easy task.

Significant effort has

been devoted to

developing computer

codes to solve this

problem accurately and

efficiently.

Such codes are often developed for commercial applications,

but also have important applications in accelerator physics.
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Magnetic Multipole Fields

Fortunately, for linear beam dynamics, we are interested in a

few simple cases: for understanding the basic properties of

common accelerator components, we don’t need to use

“Maxwell solvers”.

In particular, we note that we can write the field in a “long

straight multipole” magnet as:

By + iBx =
∞∑

n=1
(bn + ian)

(
x+ iy

r0

)n−1

(21)

where bn and an are arbitrary coefficients (chosen to give the

correct field map), and r0 is an arbitrary “reference radius”.

It is readily shown that the field of (21) satisfies Maxwell’s

equations (20).
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Magnetic Multipole Fields

The magnetic multipole field expansion is:

By + iBx =
∞∑

n=1
(bn + ian)

(
x+ iy

r0

)n−1

(22)

The “multipole components” are indexed by the value of n: so

n = 1 is a dipole; n = 2 is a quadrupole; n = 3 is a sextupole,

etc.

An ideal multipole has coefficients an and bn equal to zero, for

all except one value of n.

A “normal” multipole has an = 0 for all values of n.

A “skew” multipole has bn = 0 for all values of n.
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Normal and Skew Dipole Fields

Normal dipole Skew dipole

Bx = 0, By = b1. Bx = a1, By = 0.
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Normal and Skew Dipole Fields

Dipole magnet being installed in the Australian synchrotron.
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Normal and Skew Quadrupole Fields

Normal quadrupole Skew quadrupole

Bx = b2
y
r0
, By = b2

x
r0
. Bx = a2

x
r0
, By = −a2

y
r0
.
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Normal and Skew Quadrupole Fields

Quadrupole magnets (from IHEP, Beijing, China) awaiting

installation in ATF2 (KEK, Tsukuba, Japan).
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Normal and Skew Sextupole Fields

Normal sextupole Skew sextupole

Bx = 2b3
xy
r20
, By = b3

x2−y2

r20
. Bx = a3

x2−y2

r20
, By = −2a3

xy
r20
.
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Normal and Skew Sextupole Fields

Sextupole magnet from the ATF (KEK, Tsukuba, Japan).
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Magnetic Vector Potential for Multipole Fields

Let us write down the magnetic vector potential:

Ax = 0, Ay = 0, Az = −ℜ
∞∑

n=1
(bn + ian)

(x+ iy)n

nrn−1
0

(23)

We find from the standard relation between the magnetic field

and the vector potential:

B = ∇×A (24)

that the potential (23) gives the magnetic multipole field (22):

By + iBx = −
∂Az

∂x
+ i

∂Az

∂y
=

∞∑
n=1

(bn + ian)

(
x+ iy

r0

)n−1

(25)

Although there are many possible vector potentials that give

the same field (25) (and all give the same equations of

motion!) the particular choice (23), is convenient, because the

transverse components are zero, and there is no dependence on

the longitudinal coordinate.
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Magnetic Vector Potential for a Dipole Field

Let us first consider the dipole field. This should be easy: the

field is just a uniform field perpendicular to the reference

trajectory...

...but there’s a catch: a dipole field will lead to a curved

physical trajectory for any charged particle moving through the

field.

For that reason, we will need to use a curved reference

trajectory.

When writing down the magnetic vector potential A, we have

to take into account the fact we are using curvilinear

coordinates.
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Vector Calculus in Orthogonal Curvilinear Coordinates

Our vector potential should satisfy:

B = ∇×A (26)

with

Bx = 0, By = B0, Bs = 0 (27)

In general curvilinear coordinates (q1, q2, q3), the curl of a vector
field can be written:

[∇×A]1 =
1

Q2Q3

(
∂

∂q2
Q3A3 −

∂

∂q3
Q2A2

)
(28)

[∇×A]2 =
1

Q3Q1

(
∂

∂q3
Q1A1 −

∂

∂q1
Q3A3

)
(29)

[∇×A]3 =
1

Q1Q2

(
∂

∂q1
Q2A2 −

∂

∂q2
Q1A1

)
(30)

where

Q2
i =

(
∂x

∂qi

)2
+

(
∂y

∂qi

)2
+

(
∂z

∂qi

)2
(31)
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Magnetic Vector Potential for a Dipole Field

In our coordinates (1), (2), (3), the curl of A is given by:

[∇×A]x =
∂As

∂y
−

1

(1 + hx)

∂Ay

∂s
(32)

[∇×A]y =
1

(1+ hx)

∂Ax

∂s
−

h

(1 + hx)
As −

∂As

∂x
(33)

[∇×A]s =
∂Ay

∂x
−

∂Ax

∂y
(34)

Using these expressions we find that the vector potential in our

curvilinear coordinates:

Ax = 0 Ay = 0 As = −B0

(
x−

hx2

2(1 + hx)

)
(35)

gives the magnetic field:

Bx = 0 By = B0 Bs = 0 (36)

as desired.
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Hamiltonian for a Dipole Field

Using the vector potential (35), and the general accelerator

Hamiltonian (16) we construct the Hamiltonian for a dipole:

H =
δ

β0
− (1 + hx)

√√√√( 1

β0
+ δ

)2
− p2x − p2y −

1

β2
0γ

2
0

+(1+ hx) k0

(
x−

hx2

2(1 + hx)

)
(37)

Note that the normalised dipole field strength is given by:

k0 =
q

P0
B0 (38)

where q is the charge of the reference particle, and P0 is the

reference momentum.
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Hamiltonian for a Dipole Field

The full Hamiltonian for a dipole (37) looks rather intimidating.

We shall resort to the same technique we used to get a linear

map for a drift space: we expand the Hamiltonian to

second-order in the dynamical variables.

As before, this is valid as long as the dynamical variables

remain small.

The second-order Hamiltonian is:

H2 =
1

2
p2x +

1

2
p2y + (k0 − h)x+

1

2
hk0x

2 −
h

β0
xδ +

δ2

2β2
0γ

2
0

(39)

We can tell a good deal already just by looking at this

Hamiltonian...
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Hamiltonian for a Dipole Field

The second-order Hamiltonian is (39):

H2 =
1

2
p2x +

1

2
p2y + (k0 − h)x+

1

2
hk0x

2 −
h

β0
xδ +

δ2

2β2
0γ

2
0

(40)

Note the term (k0 − h)x: a term in the Hamiltonian that is first

order in one of the variables results in a zeroth-order term in

the map for the conjugate variable.

In this case, we expect to see a horizontal deflection – a

change in px. This happens if the curvature of the reference

trajectory is not matched to the magnetic field of the dipole.

If k0 = h, then the curvature is properly matched, and the term

(k0− h)x vanishes: a particle initially on the reference trajectory

and having the reference energy stays on the reference

trajectory through the dipole.
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Hamiltonian for a Dipole Field

The second-order Hamiltonian is (39):

H2 =
1

2
p2x +

1

2
p2y + (k0 − h)x+

1

2
hk0x

2 −
h

β0
xδ +

δ2

2β2
0γ

2
0

(41)

Next, note the term 1
2hk0x

2: this looks like a “focusing term” –

recall the potential energy term in the Hamiltonian for an

harmonic oscillator.

It appears that in moving through a dipole, particles will

oscillate about the reference trajectory. This is perhaps

unexpected.

How do we understand this effect?
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Weak Focusing in a Dipole Field

In a uniform magnetic field, the trajectories of two particles

with some small initial offset will “oscillate” around each other.
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Dispersion in a Dipole Field

The second-order Hamiltonian is (39):

H2 =
1

2
p2x +

1

2
p2y + (k0 − h)x+

1

2
hk0x

2 −
h

β0
xδ +

δ2

2β2
0γ

2
0

(42)

Finally, note the term h
β0

xδ: this contains the product of two

dynamical variables, the horizontal coordinate x, and the energy

deviation δ.

The result of this term will be a coupling of the horizontal and

longitudinal motion. For example, there will be a horizontal

deflection depending on the energy of the particle.

This is called “dispersion”, and is a consequence of the fact

that for relativistic particles, the higher the particle’s energy,

the higher its mass, and the less effect there is on its trajectory

from the Lorentz force.
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Transfer Map for a Dipole

Now we have the Hamiltonian for a dipole, and have considered

some of the dynamics we are likely to expect from it. What are

the solutions to the equations of motion?

Hamilton’s equations following from the Hamiltonian (39) are

essentially those for an harmonic oscillator. In the horizontal

plane, the solutions are:

x(s) = x(0) cosωs+ px(0)
sinωs

ω
+

(
δ(0)

h

β0
+ h− k0

)
(1− cosωs)

ω2

(43)

px(s) = −x(0)ω sinωs+ px(0) cosωs+

(
δ(0)

h

β0
+ h− k0

)
sinωs

ω

(44)

where:

ω =
√
hk0 (45)

Linear Dynamics, Lecture 3 31 Curved Coordinate Systems



Transfer Map for a Dipole

In the vertical plane, the solutions are:

y(s) = y(0) + py(0)s (46)

py(s) = py(0) (47)

which is the same as for a drift space: there is no weak

focusing in the vertical plane.

In the longitudinal plane, the solutions are:

z(s) = z(0)− x(0)
h

β0

sinωs

ω
− px(0)

h

β0

(1− cosωs)

ω2
+ δ(0)

s

β2
0γ

2
0

−
(
δ(0)

h

β0
+ h− k0

)
h

β0

(ωs− sinωs)

ω3
(48)

δ(s) = δ(0) (49)
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Transfer Matrix for a Dipole

Equations (43)–(49) constitute the transfer map for a dipole.

Since the equations are linear, we can write them in the form

of a transfer matrix, R.

Let us consider the case that the reference trajectory is

matched to the dipole strength, i.e. ω = h = k0: this is the

situation that we normally design in an accelerator.

In this case, the transfer matrix for a dipole of length L is:

R =



cosωL sinωL
ω

0 0 0 1−cosωL
ωβ0

−ω sinωL cosωL 0 0 0 sinωL
β0

0 0 1 L 0 0
0 0 0 1 0 0

−sinωL
β0

−1−cosωL
ωβ0

0 0 1 L
β2

0γ
2
0

− ωL−sinωL
ωβ2

0

0 0 0 0 0 1


(50)

Note that we have not yet included end effects – the edges of

the dipole have their own dynamical effects on the beam!
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Summary

To keep the values of the dynamical variables small in dipole

magnets, we use a curved reference trajectory. Generally, we

choose a reference trajectory that follows the path of a particle

having the reference momentum.

We need to define the variables in the curved coordinate system

carefully: this can be achieved using a canonical transformation.

The dynamics in dipoles displays some interesting features.

These include dispersion (variation in trajectory with energy)

and weak focusing.

The effect of weak focusing in a horizontal bending magnet is

to keep the horizontal coordinate of a particle close to the

reference trajectory: in the horizontal plane, particles oscillate

around the reference trajectory with period equal to the period

of the circular motion in the field of the magnet.
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