15th International Conference on Muon Spin Rotation, Relaxation and Resonance

Contribution ID: 214 Contribution code: P-TUE-19

Type: Poster

Local electronic structure of dilute hydrogen in gallium oxide

Tuesday, 30 August 2022 18:40 (20 minutes)

Gallium oxide β -Ga₂O₃ is currently drawing much attention as a material for high-voltage power devices because of its large band gap ($E_{\rm g} \sim$ 4.9 eV). We investigated the electronic structures of muon as a pseudohydrogen in β -Ga₂O₃ in which the dilute hydrogen is under the central focus as a crucial factor for the bulk conducting properties. We demonstrate by μ SR study combined with the first principles calculations that muons in β -Ga₂O₃ have two electronic structures: a state corresponding to hydrogen that acts as an electron donor (Mu₁), bounded to three-coordinated oxygen, and a hydride-like state in rapid motion (Mu₂). Furthermore, we imply from the Hall effect measurements that the fractional yield of Mu₂ exhibits a close link with the mobility and density of the carriers (electrons).

In the presentation, we will compare our results with those of previous study and discuss the electronic structures of Mu_1 and Mu_2 in terms of our recently proposed ambipolar model of muon in oxides.

Primary author: Dr HIRAISHI, Masatoshi (Ibaraki University)

Co-authors: OKABE, Hirotaka (KEK IMSS); Prof. KODA, Akihiro (IMSS, KEK); Prof. KADONO, Ryosuke (KEK IMSS); Dr OHSAWA, Takeo (National Institute for Materials Science (NIMS)); Prof. OHASHI, Naoki (National Institute for Materials Science); Dr IDE, Keisuke (Materials and Structures Laboratory, Tokyo Institute of Technology); Prof. KAMIYA, Toshio (Materials and Structures Laboratory, Tokyo Institute of Technology); Prof. HOSONO, Hideo (MCES, Titech)

Presenter: Dr HIRAISHI, Masatoshi (Ibaraki University)

Session Classification: Posters

Track Classification: Semiconductors