15th International Conference on Muon Spin Rotation, Relaxation and Resonance

Contribution ID: 238 Contribution code: O-29

Type: Oral

Universal fluctuating regime in triangular chromate pure Heisenberg S=3/2 antiferromagnets

Thursday, 1 September 2022 09:40 (20 minutes)

The series of triangular compounds ACrO₂ is a model series for studying the Heisenberg model on S=3/2 (Cr³⁺: half-filled t_{2g} orbitals) triangular antiferromagnets and the impact of interlayer couplings on the dynamics. For this, we report μ SR measurements on α -HCrO₂ and KCrO₂ [1] which complete former studies on the series of triangular compounds ACrO₂, A = Li , Na [2, 3]. Coupled to ¹H and ³⁹K nuclear magnetic resonance (NMR), we establish the static character at low-T, as expected for a near neighbour Heisenberg model, yet displaying a broad and remarkable regime with slow fluctuations extending from T_N down to 0.2 T_N . This regime is marked by a maximum in the μ SR relaxation rate occuring at 0.7 T_N , associated with an NMR wipe-out .

The scaling of the NMR and μ SR data with respect to J or T_N supports a scenario where a crossover from 2D to 3D correlations sets in around 0.7 T_N preceded by a typical 2D regime of the TLHAF which appears to be a hallmark of the TLHAF with ABC stacking. We discuss the role of interlayer frustration which may bear implications to recent spin-liquid candidates with the triangular geometry and exclude a scenario à la Berezinskii-Kostelitz-Touless of vortex-antivortex topological excitations in that regime. In turn, this underlines the crucial need of further neighbour interactions, anisotropy typical of rare earth or even disorder to stabilize a quantum spin liquid state in triangular antiferromagnets such as YbMgGaO₄.

[1] K. Somesh et al. Phys. Rev. B 104, 104422 (2021).

[2] A. Olariu et al. Phys. Rev. Lett. 97, 167203 (2006).

[3] A. Olariu et al. Phys. Rev. B 79, 224401 (2009).

Primary author: MENDELS, Philippe (Université Paris(Sacaly)

Co-authors: Dr SIMUTIS, G. (Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland); Prof. BERT, Fabrice (Université Paris-Sacaly); Prof. NATH, Ramesh (IISER Thiruvananthapuram); Dr SOMESH, K (IISER Thiruvananthapuram); Dr ZORKO, Andrej (Jozef Stefan Institute); Dr TSIRLIN, Alexander (Augsburg Univ); Prof. FURUKAWA, Yuji (Iowa State Univ.)

Presenter: MENDELS, Philippe (Université Paris(Sacaly)

Session Classification: Oral contributions

Track Classification: Spin liquids and related phenomena