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What we Learned in the Previous Lecture

In the previous lecture, we saw how the dynamics of a

conservative system could be derived from an appropriate

Hamiltonian.

The Hamiltonian is an expression containing the coordinates

and conjugate momenta (the canonical dynamical variables).

Using the Hamiltonian in Hamilton’s equations gives the

equations of motion for the system. These are first-order

simultaneous differential equations that one must solve to find

explicit expressions for the coordinates and momenta as

functions of the independent variable (usually, the time t).

We looked at a number of examples, including the Hamiltonian

for a non-relativistic particle moving through an

electromagnetic field.
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Course Outline

Part I (Lectures 1 – 5): Dynamics of a relativistic charged

particle in the electromagnetic field of an accelerator beamline.

1. Review of Hamiltonian mechanics

2. The accelerator Hamiltonian in a straight coordinate

system

3. The Hamiltonian for a relativistic particle in a general

electromagnetic field using accelerator coordinates

4. Transfer maps for linear elements

5. Three loose ends: edge focusing; chromaticity; beam

rigidity.
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Goals of This Lecture

In this lecture, we study the Hamiltonian for a relativistic

particle moving through an electromagnetic field in a straight

coordinate system.

We shall use canonical transformations to express the

Hamiltonian in terms of dynamical variables that are convenient

for accelerator physics.
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The Relativistic Hamiltonian

Albert Einstein, 1879-1955

Einstein’s equation in Special Relativity relating the energy E

and momentum p̄ of a particle is:

E2 = p̄2c2 +m2c4 (1)

where m is the rest mass. Note that p̄ in this equation is the

mechanical momentum (indicated by the bar), not the

conjugate (canonical) momentum.
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The Relativistic Hamiltonian

We saw in Lecture 1 that the Hamiltonian often took the form:

H = T + V (2)

where T is the kinetic energy, and V is the potential energy; i.e.

the Hamiltonian is often the total energy of the system,

expressed in canonical variables.

Therefore, using Einstein’s equation (1), we write down for our

relativistic Hamiltonian:

H =
√
p2c2 +m2c4 (3)

where, in the absence of an electromagnetic field, the conjugate

momentum p is equal to the mechanical momentum p̄.
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The Relativistic Hamiltonian

What equations of motion does the Hamiltonian (3) lead to?

Using Hamilton’s equations, we obtain:

dxi
dt

=
∂H

∂pi
=

cpi√
p2 +m2c2

(4)

and:
dpi
dt

= −
∂H

∂xi
= 0 (5)

Equation (5) simply expresses the conservation of momentum:

there are no forces acting on the particle, because we have not

yet introduced any electromagnetic field.

Equation (4) is equally interesting. Rearranging, we find:

p =
mẋ√

1− ẋ2/c2
(6)

where, as usual, ẋ = dx
dt .
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The Relativistic Hamiltonian

To summarise, the Hamiltonian (3):

H =
√
p2c2 +m2c4 (7)

leads to the conservation of momentum (4):

ṗ = 0 (8)

and an expression for the relativistic momentum (6):

p = βγmc (9)

where:

β =
ẋ

c
γ =

1√
1− β2

(10)

Finally, substituting (9) and (10) back into the expression for
the Hamiltonian (7), and identifying the energy E of the
particle with the Hamiltonian, we find:

E = γmc2 (11)

Eqs. (9) and (11) are as expected from Special Relativity.
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Relativistic Particles in an Electromagnetic Field

What about the electromagnetic field? For the nonrelativistic

case, we found that the Lorentz force equation followed from

the Hamiltonian if the potential energy was:

V = qϕ (12)

and the conjugate or canonical momentum was:

p = mẋ+ qA (13)

so that the non-relativistic Hamiltonian took the form:

H =
(p− qA)2

2m
+ qϕ (14)

This suggests that for the relativistic case, the Hamiltonian

should be:

H =
√
(p− qA)2 c2 +m2c4 + qϕ (15)
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Relativistic Particles in an Electromagnetic Field

Our Hamiltonian for relativistic particles in an electromagnetic

field is (15):

H =
√
(p− qA)2 c2 +m2c4 + qϕ (16)

What are the equations of motion that follow from this

Hamiltonian?

Hamilton’s first equation gives:

dx

dt
=

∂H

∂px
=

c (px − qAx)√
(p− qA)2 +m2c2

(17)

Rearranging gives:

p− qA = βγmc (18)

In other words, the canonical momentum is given by:

p = βγmc+ qA (19)
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Relativistic Particles in an Electromagnetic Field

The Hamiltonian (15) is:

H =
√
(p− qA)2 c2 +m2c4 + qϕ (20)

Hamilton’s second equation gives:

dpx

dt
= −

∂H

∂x
(21)

=
qc√

(p− qA)2 +m2c2
×

[
(px − qAx)

∂Ax

∂x
+ (py − qAy)

∂Ay

∂x
+ (pz − qAz)

∂Az

∂x

]
−q

∂ϕ

∂x
(22)

This looks a bit frightening, but with the help of the expression

(18) for the canonical momentum, we find that:

dpx

dt
= q

(
ẋ
∂Ax

∂x
+ ẏ

∂Ay

∂x
+ ż

∂Az

∂x

)
− q

∂ϕ

∂x
(23)
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Relativistic Particles in an Electromagnetic Field

The equation of motion for the canonical momentum (23) has

exactly the same form as for the non-relativistic case (see

Lecture 1, Appendix A).

Using the results from the previous lecture, we can write down

the solution:
d

dt
(p− qA) = q (E+ ẋ×B) (24)

where the electric field E and magnetic field B are defined in

the usual way:

E = −∇ϕ−
∂A

∂t
B = ∇×A (25)

Recalling the expression for the canonical momentum (18) in

the relativistic case, we have:

d

dt
βγmc = q (E+ ẋ×B) (26)
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The Hamiltonian for Particles in an Accelerator

We now have a Hamiltonian (15) that describes the motion of

a relativistic charged particle in a general magnetic field:

H =
√
(p− qA)2 c2 +m2c4 + qϕ (27)

Now consider a straight accelerator beamline: we can choose

coordinates so that the magnets, RF cavities and other

components are at defined locations along the z axis.

As a particle travels along the beamline, we know the

longitudinal coordinate z at which a particle arrives at a

particular component, but we don’t necessarily know the time

at which it arrives.

This means it is more convenient to work with the coordinate z

as the independent variable, rather than the time t.
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Path Length as the Independent Variable

A change in independent variable from time t to the z

coordinate may be accomplished with recourse to the principle

of least action, that we saw in Lecture 1.

The details of the transformation are given in Appendix A.

As a result of the change in independent variable from t to z,

the canonical variables (z, pz) are replaced by the variables

(−t, E):

• the new longitudinal coordinate is −t, where t is the time at

which the particle crosses a plane perpendicular to the

reference trajectory at a distance z along the reference

trajectory,

• the new longitudinal conjugate “momentum” is the total

energy E of the particle.
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Path Length as the Independent Variable

Changing the independent variable from time t to co-ordinate z

means that we express the dynamical variables as functions of
z, rather than as functions of time t.

The transverse coordinates and momenta are then:

x = x(z), px = px(z), y = y(z), py = py(z) (28)

The londitudinal coordinate and momenum are:

−t = −t(z), E = E(z) (29)

The Hamiltonian (from which we obtain the equations of
motion) is derived in Appendix A:

H1 = −

√
(E − qϕ)2

c2
−m2c2 − (px − qAx)

2 − (py − qAy)
2 − qAz

(30)
Note that this Hamiltonian is still a function of z.
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The Reference Momentum

It is convenient to work with variables whose values remain

small as the particle moves through the accelerator: this

enables us to make some useful approximations.

To construct appropriate variables, we introduce the reference

momentum P0. In principle, P0 can be chosen to have any

value you wish; but you would be wise to choose a value close

to the nominal momentum of particles in your accelerator.

It is easy to see that if we make the substitutions:

pi 7→ p̃i =
pi
P0

(31)

then Hamilton’s equations remain unchanged as long as we

simultaneously make the substitution:

H1 7→ H̃ =
H1

P0
(32)
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The Reference Momentum

In terms of the normalised momenta (31), the Hamiltonian is:

H̃ = −

√√√√(E − qϕ)2

P2
0 c

2
−

m2c2

P2
0

− (p̃x − ax)
2 − (p̃y − ay)

2 − az (33)

where the normalised vector potential is defined by:

a =
q

P0
A (34)

The transverse normalised momenta p̃x and p̃y should now be

small, but the longitudinal normalised momentum E/P0 will in

general be close to the speed of light, c.

To ensure that the longitudinal variables take small values, we

make one final transformation...
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A Further Transformation

To express the dynamics in terms of a suitable longitudinal

variables (with values that remain small), we can make a

canonical transformation using a mixed-variable generating

function: the details are given in Appendix B.

The new longitudinal co-ordinate is:

Z =
z

β0
− ct (35)

where β0 is the (scaled) velocity of a particle with the reference

momentum P0.

The new longitudinal momentum δ is given by:

δ =
E

P0c
−

1

β0
(36)

For a relativistic particle with the reference momentum P0, δ

will be zero. δ is generally called the “energy deviation”.
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The Accelerator Hamiltonian in a Straight Coordinate System

After all the transformations, let us clean up the notation.

First of all, we write the independent variable (distance along

the reference trajectory) as s, rather than z.

Then, we write the dynamical variables in the transverse plane

as (x, px) and (y, py). The canonical momenta are given by:

px =
γmvx + qAx

P0
and py =

γmvy + qAy

P0
(37)

where vx and vy are the components of the velocity along the x

and y axes.

Finally, in the longitudinal plane we write the coordinate Z as z,

so the variables are (z, δ):

z =
s

β0
− ct and δ =

E

P0c
−

1

β0
(38)
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The Accelerator Hamiltonian in a Straight Coordinate System

The final Hamiltonian, for a relativistic particle in an

electromagnetic field, is:

H =
δ

β0
−

√√√√( 1

β0
+ δ −

qϕ

P0c

)2
− (px − ax)

2 − (py − ay)
2 −

m2c2

P2
0

−az

(39)

Since mc
P0

= 1/γ0β0, where γ0 = 1/
√
1− β2

0 we can write:

H =
δ

β0
−

√√√√( 1

β0
+ δ −

qϕ

P0c

)2
− (px − ax)

2 − (py − ay)
2 −

1

β2
0γ

2
0
− az

(40)

Linear Dynamics, Lecture 2 19 The Accelerator Hamiltonian



Summary of Definitions

Let us remind ourselves of a few definitions.

The following are physical constants:

• q is the charge of the particle;

• m is the rest mass of the particle;

• c is the speed of light.

The electromagnetic potential functions are:

ϕ(x, y, z; s), a(x, y, z; s) =
q

P0
A(x, y, z; s) (41)

The reference momentum P0 can be chosen freely, but should
have a value close to the nominal momentum of particles in the
accelerator.

β0 is the normalised velocity of a particle moving with the
reference momentum.
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Summary of Definitions

The dynamical variables are:

(x, px) , (y, py) , (z, δ) (42)

The transverse coordinates x and y give the position of the

particle in a plane perpendicular to the reference trajectory

(using a Cartesian coordinate system).

Formally, px and py are the canonical momenta conjugate to x

and y: their physical significance is best understood in terms of

the equations of motion, which we shall consider shortly.

The coordinate z describes the longitudinal position of the

particle relative to the reference particle, i.e. the distance by

which the particle is ahead or behind the reference particle,

measured along the reference trajectory.
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Physical Interpretation of the Canonical Variables

The energy deviation is given by (36):

δ =
E

P0c
−

1

β0
(43)

Using Hamilton’s equations with the Hamiltonian (40), we can

derive the equation of motion for the longitudinal coordinate z.

In a field-free region:

H =
δ

β0
−

√√√√( 1

β0
+ δ

)2
− p2x − p2y −

1

β2
0γ

2
0

(44)

It follows from Hamilton’s equations:

dz

ds
=

∂H

∂δ
=

1

β0
−

1
β0

+ δ√(
1
β0

+ δ
)2

− p2x − p2y − 1
β2
0γ

2
0

(45)
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Physical Interpretation of the Canonical Variables

For the special case px = py = 0, and using:

1

β0
+ δ =

E

P0c
=

γ

γ0β0
(46)

we find:
dz

ds
=

1

β0
−

1

β
(47)

Therefore:
d

ds
βz =

β

β0
− 1 (48)

If β is constant (i.e. in the absence of an electric field), this

becomes:
dz

ds
=

1

β0
−

1

β
(49)
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Physical Interpretation of the Canonical Variables

Now consider two particles moving along the reference
trajectory; one (the reference particle), with speed β0c, and the
other with speed βc.

The rate of change of distance ∆s between them is:

d

ds
∆s =

βct− β0ct

β0ct
=

β

β0
− 1 (50)

Comparing (48) and (50), we see that in a field-free region, for
a particle moving along the reference trajectory, the rate of
change of βz is equal to the rate of change of the distance of
the particle from the reference particle.

The particle leads the reference particle by distance βz.
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Physical Interpretation of the Canonical Variables

Staying in a field-free region, from the Hamiltonian (44) we use
Hamilton’s equations:

dx

ds
=

∂H

∂px

dy

ds
=

∂H

∂py
(51)

to find:

px = D
x′√

1+ x′2 + y′2
≈ x′ and py = D

y′√
1+ x′2 + y′2

≈ y′

(52)
where:

D =

√
1+

2δ

β0
+ δ2 ≈ 1+

δ

β0
(53)

and the approximations are valid for x′2 + y′2 ≪ 1, and |δ| ≪ 1.
The prime indicates the derivative with respect to the path
length s:

x′ ≡
dx

ds
and y′ ≡

dy

ds
(54)
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Transfer Map for a Drift Space

Finally, let us consider the evolution of the dynamical variables

in a drift space (field-free region) of length L.

The Hamiltonian is (44):

H =
δ

β0
−

√√√√( 1

β0
+ δ

)2
− p2x − p2y −

1

β2
0γ

2
0

(55)

Since there is no dependence on the coordinates, the momenta

are constant:

∆px = 0, ∆py = 0, ∆δ = 0 (56)
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Transfer Map for a Drift Space

The transverse coordinates change as follows:

∆x

L
=

px√(
1
β0

+ δ
)2

− p2x − p2y − 1
β2
0γ

2
0

(57)

∆y

L
=

py√(
1
β0

+ δ
)2

− p2x − p2y − 1
β2
0γ

2
0

(58)

From (45), we have the change in the longitudinal coordinate:

∆z

L
=

1

β0
−

1
β0

+ δ√(
1
β0

+ δ
)2

− p2x − p2y − 1
β2
0γ

2
0

(59)
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Transfer Map for a Drift Space

Equations (56), (57), (58) and (59) constitute the transfer

map for a drift space: they tell us how to calculate the values

of the dynamical variables at the exit of the drift space, given

the values at the entrance.

Note that the map is nonlinear: the changes in the variables

have a nonlinear dependence on the initial values of the

variables.

However, we can make a linear approximation to the transfer

map by using Taylor expansions for the changes in the

coordinates, (57), (58) and (59).

For small values of the canonical momenta, first-order

expansions provide reasonable accuracy for most applications.

We can then write the transfer map as a matrix...
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Transfer Map for a Drift Space

For a drift space, we can write:

x⃗(s = L) ≈ R x⃗(s = 0) (60)

where:

x⃗ =



x
px
y
py
z
δ


R =



1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L

β2
0γ

2
0

0 0 0 0 0 1


(61)

This approximation is valid only for |δ| ≪ 1, |px| ≪ 1, |py| ≪ 1,

and γ0 ≫ 1.

Linear Dynamics, Lecture 2 29 The Accelerator Hamiltonian



Transfer Map for a Drift Space: Symplectic Approach

Note that by making a linear approximation to the exact

solutions to the equations of motion there is a danger that we

lose symplecticity.

In fact, in the case of a drift space, we are safe and the linear

approximation is still symplectic.

However, there is an alternative way of constructing an

approximate solution, that ensures we retain symplecticity.

Instead of making a Taylor expansion of the solutions to the

equations of motion, we can expand the Hamiltonian to second

order in the dynamical variables.

We can then solve the new Hamiltonian exactly to produce a

linear map.
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Transfer Map for a Drift Space: Symplectic Approach

In other words, we approximate the Hamiltonian, rather than

the equations of motion: an exact solution to any Hamiltonian

is symplectic.

Expanding the Hamiltonian (55) to second order in the

dynamical variables (and dropping constant terms that make no

contribution to the equations of motion), we construct the

Hamiltonian:

H2 =
1

2
p2x +

1

2
p2y +

1

2

δ2

β2
0γ

2
0

(62)

This is much simpler than Hamiltonians we have recently

looked at!
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Transfer Map for a Drift Space: Symplectic Approach

Solving the equations of motion is very easy, and we find once

again that the transfer matrix for a drift of length L is given by:

R =



1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L

β2
0γ

2
0

0 0 0 0 0 1


(63)
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Summary I

For describing particle motion in high-energy accelerators, we

use a relativistic Hamiltonian with momentum variables

normalised to a reference momentum.

The beamline is generally designed for particles with momenta

close to the reference momentum.

The fields (and hence the Hamiltonian) change continually

along the beamline. This means it is more convenient to work

with the path length as the independent variable, rather than

the time.
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Summary II

We can construct linear maps for accelerator components by

expanding the appropriate relativistic Hamiltonian to second

order in the dynamical variables.

The advantage of approximating the Hamiltonian (rather than

finding approximate solutions to the exact Hamiltonian) is that

the map produced in this way is guaranteed to be symplectic.

For an expansion of the Hamiltonian (to second order) to be

valid, the values of the dynamical variables must be small.
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Appendix A: Path Length as the Independent Variable

In this appendix, we show how to make a change in

independent variable, from time t to longitudinal coordinate z.

The procedure for changing the independent variable starts

from the Principle of Least Action...

A particle will follow a path in

phase space (a plot of velocity q̇ vs

coordinate q) for which the action

S is a minimum:

δS = δ

[∫ t1

t0
Ldt

]
= 0 (64)
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Appendix A: Path Length as the Independent Variable

We can write the action in terms of the Hamiltonian:

S =
∫ t1

t0
(pxẋ+ pyẏ + pzż −H) dt (65)

Let us choose our coordinates so that the z axis lies along the

reference trajectory (with distance along the reference

trajectory measured by the variable s).

Changing the variable of integration from time t to path length

z, the action becomes:

S =
∫ z1

z0

(
pxx

′ + pyy
′ + pz −Ht′

)
dz (66)

where the prime denotes the derivative with respect to z.
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Appendix A: Path Length as the Independent Variable

The action with time as the independent variable is (65):

S =
∫ t1

t0
(pxẋ+ pyẏ + pzż −H) dt (67)

and the action with path length as the independent variable is

(66):

S =
∫ z1

z0

(
pxx

′ + pyy
′ −Ht′ + pz

)
dz (68)

Comparing equations (67) and (68), we see that to describe

the motion in Hamiltonian mechanics with path length z as the

independent variable, we should take as our canonical variables:

(x, px) , (y, py) , (−t,H) (69)

and use for the Hamiltonian:

H1 = −pz (70)
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Appendix A: Path Length as the Independent Variable

Identifying the Hamiltonian H with the energy E, we can

rearrange equation (15) to express pz as:

pz =

√
(E − qϕ)2

c2
−m2c2 − (px − qAx)

2 − (py − qAy)
2 + qAz (71)

Therefore, in the new variables, our Hamiltonian is:

H1 = −

√
(E − qϕ)2

c2
−m2c2 − (px − qAx)

2 − (py − qAy)
2 − qAz

(72)

where E is the total energy of the particle.

In the mathematical formalism of Hamiltonian mechanics, E is

(in this case) a canonical momentum variable conjugate to −t.
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Appendix B: The Energy Deviation, δ

In this appendix, we show how to make a canonical

transformation, so that the longitudinal momentum of a

particle in an accelerator is described by a variable with a small

value.

We start with the Hamiltonian (33), in which the longitudinal

coordinate is −t, and the canonical momentum is the total

energy of the particle E.

We make a canonical transformation to new longitudinal

variables, using a mixed-variable generating function of the

second kind:

F2(x, Px, y, Py,−t, δ, z) = xPx + yPy +

(
z

β0
− ct

)(
1

β0
+ δ

)
(73)

where Px, Py and δ are our new momentum variables, and β0 is

the normalised velocity of a particle with the reference

momentum P0.
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Appendix B: The Energy Deviation, δ

The equations for a transformation defined by a mixed-variable

generating function of the second kind are:

p̃i =
∂F2

∂qi
Qi =

∂F2

∂Pi
K = H̃ +

∂F2

∂z
(74)

Using these equations, we find that the transverse variables are

unchanged:

p̃x = Px, X = x (75)

p̃y = Py, Y = y (76)
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Appendix B: The Energy Deviation, δ

The old and new longitudinal variables are related by:

E

P0
= c

(
1

β0
+ δ

)
, Z =

z

β0
− ct (77)

Finally, the new Hamiltonian (dropping a constant term) is:

K =
δ

β0
−

√√√√( 1

β0
+ δ −

qϕ

P0c

)2
− (Px − ax)

2 − (Py − ay)
2 −

m2c2

P2
0

−az

(78)

The new dynamical variable δ is given by:

δ =
E

P0c
−

1

β0
(79)

For a relativistic particle with the reference momentum P0, δ

will be zero. δ is generally called the “energy deviation”.
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Appendix B: The Energy Deviation, δ

We have made a series of transformations. Let us tidy up the

notation, and rewrite:

K 7→ H, Pi 7→ pi, z 7→ s, Z 7→ z (80)

Then the Hamiltonian for a relativistic particle in an

electromagnetic field, using the distance along a straight

reference trajectory as the independent variable is:

H =
δ

β0
−

√√√√( 1

β0
+ δ −

qϕ

P0c

)2
− (px − ax)

2 − (py − ay)
2 −

m2c2

P2
0

−az

(81)

Since mc
P0

= 1/γ0β0, where γ0 = 1/
√
1− β2

0 we can write:

H =
δ

β0
−

√√√√( 1

β0
+ δ −

qϕ

P0c

)2
− (px − ax)

2 − (py − ay)
2 −

1

β2
0γ

2
0
− az

(82)
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