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Introduction

Early accelerators were fairly straightforward.

Joseph John Thomson, 1856-1940
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Introduction

Modern accelerators are more sophisticated.
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Introduction

For modern accelerators to operate properly, the beam

dynamics must be modelled and understood with very high

precision.

There are many effects that are important, including:

• synchrotron radiation

• Coulomb interactions between the particles

• interactions with the residual gas in the vacuum chamber

• interactions with the vacuum chamber

• ...
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Introduction

However, everything starts with understanding the motion of

individual particles through the fields from the magnets and the

RF cavities.

There are several possible approaches. We shall develop an

approach starting from the fundamentals of classical mechanics.

This requires more initial effort to derive the equations of

motion in a form appropriate for accelerator physics; but has

the benefit of providing a rigorous framework for modelling the

dynamics with the precision required for modern accelerators.
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Course Outline

Part I (Lectures 1 – 5): Dynamics of a relativistic charged

particle in the electromagnetic field of an accelerator beamline.

1. Review of Hamiltonian mechanics

2. The accelerator Hamiltonian in a straight coordinate

system

3. The Hamiltonian for a relativistic particle in a general

electromagnetic field using accelerator coordinates

4. Transfer maps for linear elements

5. Three loose ends: edge focusing; chromaticity; beam

rigidity.
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Course Outline

Part II (Lectures 6 – 10): Description of beam dynamics using

optical lattice functions.

6. Linear optics in periodic, uncoupled beamlines

7. Including longitudinal dynamics

8. Bunches of many particles

9. Coupled optics

10. Effects of linear imperfections
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Classical Mechanics

There are three alternative approaches to classical mechanics:

Newtonian, Lagrangian and Hamiltonian mechanics.

Formally, all these approaches are equivalent: they have the

same “physical content”, and any one can be derived from any

of the others.

So why prefer any one over the others?

It depends on the problem you are trying to solve; the

equations of motion for a given system may appear simpler in

one of the approaches than in the others.

As we shall see, for accelerator physics, Hamiltonian mechanics

provides some great advantages.
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Newtonian Mechanics

Isaac Newton, 1643-1727

The equation of motion of a particle of mass m subject to a

force F is:
d

dt
mẋ = F (x, ẋ; t) (1)

where ẋ is the velocity.

Note that the dot over a variable indicates the derivative with

respect to time.
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Newtonian Mechanics: A Simple Example

Consider the case of a particle of fixed mass moving in one

degree of freedom, subject to a force F given by:

F = −mω2x (2)

The equation of motion becomes:

m
d

dt
ẋ = −mω2x (3)

or:

d2x

dt2
= −ω2x (4)

This has solution:

x(t) = x0 sin (ωt+ ϕ0) (5)

where x0 and ϕ0 are constants determined by the initial values

of x(t) and ẋ(t).
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Newtonian Mechanics

In Newtonian mechanics, the dynamics of the system are

defined by the force F, which in general is a function of

position x, velocity ẋ and time t.

Given the function F, we derive the equations of motion, which

we must then solve to give the explicit dependence of the

position x (and the velocity ẋ) on the independent parameter t.

“Physics” consists of writing down the form of the function F

for a given system.
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The Lorentz Force

Hendrik Lorentz, 1853-1928

Of particular interest in accelerator physics is the Lorentz force

for a particle of charge q moving in a region with an electric

field E(x) and magnetic field B(x):

F = q (E+ ẋ×B) (6)

The functions E and B must satisfy a further set of equations

(Maxwell’s equations), to be dealt with later.
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Lagrangian Mechanics

Joseph-Louis Lagrange, 1736-1813

Given a function L(q, q̇; t) (called the Lagrangian), the

equations of motion for a dynamical system are given by:

∂L

∂qi
−

d

dt

(
∂L

∂q̇i

)
= 0 (7)

where qi are the components of q.

Equations (7) are known as the “Euler-Lagrange Equations.”
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Lagrangian Mechanics: Principle of Least Action

Consider the path traced by a dynamical system on a plot of q̇

vs q. We can evaluate the integral S of the Lagrangian L along

the line:

S =
∫ t1

t0
Ldt (8)
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Lagrangian Mechanics: Principle of Least Action

It can be shown that the Euler-Lagrange equations (7) define a

path for which the action S is a minimum, i.e.:

δS = δ

[∫ t1

t0
Ldt

]
= 0 (9)

where the operator δ gives the change with respect to a change

in path.
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Lagrangian Mechanics: A Simple Example

The variables qi can be any convenient set of parameters that

describe the state of the system. The coordinates in Euclidean

space are an obvious example, (q = x) but not the only (or

necessarily best) choice.

The question is, how do we write down the function L that

contains the dynamics of the system? This question is

equivalent to “How do we write down the force F?” in

Newtonian mechanics.

It turns out that in many cases the Lagrangian is given by:

L = T − V (10)

where T is the kinetic energy of the system, and V is the

potential energy.
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Lagrangian Mechanics: A Simple Example

Consider a particle moving in one degree of freedom, with
kinetic energy T given by:

T =
1

2
mẋ2 (11)

and potential energy V given by:

V =
1

2
mω2x2 (12)

The Lagrangian is then:

L = T − V =
1

2
mẋ2 −

1

2
mω2x2 (13)

Inserting the Lagrangian (13) into the Euler-Lagrange
equations (7), we find the equation of motion:

−ω2mx−
d

dt
(mẋ) = 0 (14)

or:

d2x

dt2
= −ω2x (15)
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Lagrangian Mechanics: A Simple Example

Note that in using the Euler-Lagrange Equations to derive the

equation of motion from the Lagrangian, we treated the

coordinates x and the velocities ẋ as independent of one

another.

Of course, the coordinates and velocities are related through

differentiation – ẋ is the rate of change of x – but for applying

the Euler-Lagrange Equations, we ignore this fact.

Lagrangian mechanics allows us to write down the equation of

motion using any convenient parameters. This sometimes

simplifies the problem compared to a treatment based on

Newtonian mechanics.

There is a third way...
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Hamiltonian Mechanics

William Rowan Hamilton, 1805-1865

Given a function H(x,p; t) (called the Hamiltonian), the

equations of motion for a dynamical system are given by

Hamilton’s equations:

dxi
dt

=
∂H

∂pi
(16)

dpi
dt

= −
∂H

∂xi
(17)
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The Hamiltonian and the Conjugate Momentum

The Hamiltonian plays the same role in Hamiltonian mechanics

as does the force in Newtonian mechanics, and the Lagrangian

in Lagrangian mechanics: it defines the dynamics of the

system. “Physics” consists of writing down a Hamiltonian.

We need to be careful about the meaning of the conjugate

momentum p: in simple cases, it is equivalent to the

mechanical momentum mẋ – but this is not always the case!

Formally, given a Lagrangian L, the conjugate momentum and

the Hamiltonian can be derived as follows:

pi =
∂L

∂q̇i
(18)

H =
∑
i

q̇ipi − L (19)
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Hamilton’s Equations

The Lagrangian is given in terms of the coordinates and

velocities.

Equation (18) defines the conjugate momenta that we can use

instead of the velocities.

The Hamiltonian defined by equation (19) should be expressed

purely in terms of the coordinates and conjugate momenta: the

velocities should not appear in the Hamiltonian.

Given a Hamiltonian, the equations of motion are Hamilton’s

equations (16) and (17):

dxi
dt

=
∂H

∂pi
,

dpi
dt

= −
∂H

∂xi
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Hamilton’s Equations

Note that in n degrees of freedom:

• the Euler-Lagrange equations provide n second-order

differential equations,

• Hamilton’s equations provide 2n first-order differential

equations.

Representing the dynamics using first-order equations has

certain advantages for the solving the equations using

numerical methods, and for understanding general properties of

the dynamics (including stability and conserved quantities).
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Hamiltonian Mechanics: A Simple Example

Consider the Lagrangian that we looked at before:

L =
1

2
mẋ2 −

1

2
mω2x2 (20)

The conjugate momentum (18) is:

px =
∂L

∂ẋ
= mẋ (21)

Note that as usual, we treat x and ẋ as independent of one another. Also

note that in this case, the conjugate momentum px is equal to the

mechanical momentum mẋ.

The Hamiltonian is:

H = ẋpx − L = mẋ2 − L (22)

or:

H =
p2x
2m

+
1

2
mω2x2 (23)
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Hamiltonian Mechanics: A Simple Example

Given the Hamiltonian (23):

H =
p2x
2m

+
1

2
mω2x2 (24)

and Hamilton’s equations, (16) and (17):

dx

dt
=

∂H

∂px
,

dpx

dt
= −

∂H

∂x
(25)

the equations of motion are:

dx

dt
=

px

m
,

dpx

dt
= −mω2x (26)

Note that equations (26) correspond to Newton’s equation (1).
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Comment: From Lagrangian to Hamiltonian Mechanics

Moving from Lagrangian to Hamiltonian mechanics essentially

involves making a change of variables from ẋ to p.

Remember that the Hamiltonian should always be written in

terms of the conjugate momentum p rather than the velocity ẋ.

In Lagrangian mechanics, the “state” of a system at any time

is defined by specifying values for the coordinates x (or more

generally q) and the velocity ẋ (or q̇).

In Hamiltonian mechanics, the “state” of a system at any time

is defined by specifying values for the coordinates x (or more

generally q) and the momentum p.
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The Hamiltonian as a Conserved Quantity

It follows from Hamilton’s equations that the Hamiltonian itself

is conserved if the independent (“time-like”) variable does not

appear explicitly in the Hamiltonian. This can be shown as

follows...

We begin by using the chain rule to write:

dH

dt
=

∂H

∂x

dx

dt
+

∂H

∂px

dpx

dt
+

∂H

∂t
(27)

Using Hamilton’s equations, we have:

dH

dt
=

∂H

∂x

∂H

∂px
−

∂H

∂px

∂H

∂x
+

∂H

∂t
=

∂H

∂t
(28)

If the Hamiltonian does not depend explicitly on t, then the

Hamiltonian is conserved:

dH

dt
=

∂H

∂t
= 0 (29)
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Hamiltonian Mechanics: Some Remarks

When deriving the equations of motion for the system from

Hamilton’s equations, we treat ẋ and p as independent of one

another, even though we have a formal relationship between

them.

In our simple example, the Hamiltonian (23) was:

H =
p2x
2m

+
1

2
mω2x2 (30)

which can be written:

H = T + V (31)

for kinetic energy T and potential energy V . It appears that (at

least in this case) the Hamiltonian is the “total energy” of the

system, expressed in terms of the coordinates and conjugate

momentum. This is a clue for writing down the Hamiltonian in

more complicated systems.
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A Further Example: Dynamics in an Electromagnetic Field

Consider the Lagrangian:

L =
1

2
mẋ · ẋ− qϕ+ qA · ẋ (32)

This describes a non-relativistic particle with two components
to its potential energy: one a straightforward scalar function
ϕ(x) of position, and the other a function of the vector field
A(x) and proportional to the particle’s velocity ẋ.

The conjugate momentum is:

pi =
∂L

∂ẋi
= mẋi + qAi (33)

Note that in this case, the conjugate momentum p is not equal
to the mechanical momentum mẋ.

The Hamiltonian is:

H = p · ẋ− L =
(p− qA)2

2m
+ qϕ (34)
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A Further Example: Dynamics in an Electromagnetic Field

After some working (see Appendix A), we find that the

equation of motion (17) from the Hamiltonian (34) is (90):

d

dt
(p− qA) = q (E+ ẋ×B) (35)

or:
d

dt
mẋ = q (E+ ẋ×B) (36)

where the fields E and B are derived from the potentials:

E = −∇ϕ−
∂A

∂t
(37)

B = ∇×A (38)

Equation (36) is just Newton’s equation (1) with the Lorentz

force (6). Note that this was derived for non-relativistic

particles: later we will need to derive a relativistic equation of

motion.
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Hamiltonian Mechanics: Some Further Remarks

Hamiltonian mechanics introduces three important and related

concepts:

• canonical variables

• symplecticity

• canonical transformations

We shall briefly discuss each of these concepts in the rest of

this lecture.
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Canonical Variables

One of the benefits of using Hamiltonian mechanics is that it

provides a highly structured framework for transforming

between coordinate systems. This is important in accelerator

physics, where the variables used are not always the most

obvious choice.

In Hamiltonian mechanics, the canonical variables consist of a

set of coordinates and their conjugate momenta defined by

equation (18).

The word canonical is used to indicate a particular

choice from of a number of possible conventions. This

convention allows a mathematical object or class of

objects to be uniquely identified or standardized.

Wolfram Mathworld, mathworld.wolfram.com
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Symplecticity

A 2n× 2n symplectic matrix M is one that satisfies:

MTSM = S (39)

where S is a 2n× 2n matrix with block diagonals:

S2 =

(
0 1
−1 0

)
(40)

Note that the matrix S has the properties:

ST = −S (41)

and:

S2 = −I (42)

where I is the 2n× 2n identity matrix.

... OK, but what has this got to do with Hamiltonian

mechanics?

Linear Dynamics, Lecture 1 31 Hamiltonian Mechanics



Symplecticity and Hamiltonian Mechanics

We write Hamilton’s equations (16) and (17) in the form:

d

dt
x⃗ = S ∇⃗xH (43)

where:

x⃗ =


x
px
y
py
...

 (44)

and:

∇⃗x =


∂x
∂px
∂y
∂py
...

 (45)
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Symplecticity and Hamiltonian Mechanics

A Hamiltonian that is second-order in the dynamical variables

leads to equations of motion that are linear.

For a general second-order Hamiltonian:

∇⃗xH = Jx⃗ (46)

where J is a symmetric matrix, JT = J (determined by H).

Hamilton’s equations can then be written:

d

dt
x⃗ = SJx⃗ (47)

The solution to (47) is given by:

x⃗(t) = M(t)x⃗(0) (48)

where the transfer matrix M(t) is given by:

M(t) = exp (tSJ) (49)
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Symplecticity and Hamiltonian Mechanics

Now, note that J is symmetric and S is antisymmetric:

JT = J ST = −S (50)

Also, it can be shown (see Appendix B) that:

S exp (tSJ) = exp (tJS)S (51)

Using equations (50) and (51), we can write:

MT(t)SM(t) = exp (−tJS)S exp (tSJ) (52)

= exp (−tJS) exp (tJS)S (53)

= S (54)

Therefore, from (39), M(t) is symplectic.

Conclusion: for a linear system whose dynamics can be

described by a Hamiltonian, the transfer matrix is symplectic.

... OK, but what does symplecticity mean physically?
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Symplecticity and Hamiltonian Mechanics

Consider an area of phase space (a plot of the conjugate

momentum vs the corresponding coordinate) defined by vectors

e⃗1 and e⃗2.
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Symplecticity and Hamiltonian Mechanics

The area of the phase space element is:

A = |e⃗1 × e⃗2| = e⃗T1Se⃗2 (55)
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Symplecticity and Hamiltonian Mechanics

If the system evolves over some period of time, t:

e⃗1 → e⃗ ′1 = M(t)e⃗1 and e⃗2 → e⃗ ′2 = M(t)e⃗2 (56)
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Symplecticity and Hamiltonian Mechanics

The area of the new section of phase space is:

A′ = e⃗ ′T1 Se⃗ ′2 (57)

= e⃗T1M
T(t)SM(t)e⃗2 (58)

But for a Hamiltonian system, M(t) is symplectic:

MT(t)SM(t) = S (59)

It follows that the area of the new section of phase space is:

A′ = e⃗T1Se⃗2 (60)

= A (61)

In other words...
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Symplecticity and Hamiltonian Mechanics

...A′ = A: the area of the element of phase space is conserved

during the motion of the system.
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Symplecticity and Hamiltonian Mechanics

Joseph Liouville, 1809-1882

We have shown that the area of phase space “elements” is

conserved during the motion of any system whose dynamics are

linear, and can be described by a Hamiltonian.

In fact, it can be shown that areas of phase space elements are

conserved for all Hamiltonian systems, even when the dynamics

are nonlinear. This important result is known as “Liouville’s

Theorem”.
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Symplecticity and Hamiltonian Mechanics

The conservation of area in phase space is an important
property of Hamiltonian systems, which are also known as
“conservative systems”.

Not all dynamical systems are conservative. The presence of
dissipative forces, such as friction, leads to a shrinkage of phase
space area.

In accelerator physics, the phase space area occupied by a
bunch of particles is an important quantity, and is known as the
“emittance”.

In an accelerator, synchrotron radiation can be analogous to
friction, and can reduce the emittance of a bunch of particles.

However, in many cases, it is a good approximation to neglect
non-conservative forces on particles in an accelerator; in this
approximation, Liouville’s theorem tells us that the emittance
of a bunch of particles is conserved as the particles move
through an accelerator.
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Canonical Transformations

One of the great advantages of Hamiltonian mechanics, is that
it provides a rigorous framework for making changes of
variables, and for writing down the equations of motion in the
new variables.

In Hamiltonian mechanics, the process of changing from one
set of (canonical) variables to another is known as a “canonical
transformation”.

Here, we do not go through a rigorous treatment, but simply
quote some useful results, and give some examples.

In general, we wish to transform from a set of “old” canonical
variables (q,p) to a “new” set (Q,P).

We wish to find expressions for the new variables in terms of
the old variables; the requirement that the new variables be
canonical is a constraint on the expressions that are allowed.
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Canonical Transformations: Mixed-Variable Generating Functions

Canonical transformations may be found by means of

“mixed-variable generating functions”.

A mixed-variable generating function is a function of some

combination of old and new canonical variables, and

(optionally) the independent variable, t.

For example, consider:

F2 = F2(q,P, t) (62)

F2 is a function of the old coordinates, the new momenta, and

the time.
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Canonical Transformations: Mixed-Variable Generating Functions

In terms of F2(q,P, t), the old momenta are expressed as:

pi =
∂F2

∂qi
(63)

and the new coordinates are expressed as:

Qi =
∂F2

∂Pi
(64)

The new Hamiltonian is given by:

K = H +
∂F2

∂t
(65)

We can use these expressions to expr
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Canonical Transformations: Mixed-Variable Generating Functions

Let’s look at a specific example.

Consider the Hamiltonian for a particular nonlinear oscillator:

H =
p2

2(1 + q2)2
+

1

2

(
q +

1

3
q3
)2

(66)

We can write down the equations of motion for the oscillator

using Hamilton’s equations (16) and (17), and then try to solve

them; but in this case, there is a simpler method...
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Canonical Transformations: Mixed-Variable Generating Functions

First, write down the generating function:

F2(q, P ) =
(
q +

1

3
q3
)
P (67)

We now use F2(q, P ) to generate new canonical variables

(Q,P ), and a new Hamiltonian.

If we’ve chosen the generating function correctly, the equations

of motion in the new variables will be simpler to solve than the

equations of motion in the old variables...
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Canonical Transformations: Mixed-Variable Generating Functions

Using the above equations (63) and (64), we find relations

between the old variables (q, p) and the new variables (Q,P ):

p =
∂F2

∂q
=
(
1+ q2

)
P (68)

Q =
∂F2

∂P
= q +

1

3
q3 (69)

In other words:

P =
p

1+ q2
(70)

Q = q +
1

3
q3 (71)

and in terms of the new variables, the Hamiltonian (66)

becomes:

K =
1

2
P2 +

1

2
Q2 (72)
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Canonical Transformations: Mixed-Variable Generating Functions

Now the solution is easy.

We recognise the Hamiltonian (72) for a simple harmonic

oscillator, so the equations of motion can be solved to give:

Q = Q0 sin(t+ ϕ0) (73)

where the constants Q0 and ϕ0 are set by the initial conditions.

In terms of the original coordinate:

q +
1

3
q3 = Q0 sin(t+ ϕ0) (74)

This is an algebraic equation, which we can solve for q. But

since this is a course on linear dynamics, we won’t take this

example any further.
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Canonical Transformations: Mixed-Variable Generating Functions

Finally, we note that there are four “standard” mixed-variable

generating functions that can be used to construct canonical

transformations. The equations are as follows.

Generating function of the first kind:

F1 = F1(q,Q, t), pi =
∂F1
∂qi

, Pi = −∂F1
∂Qi

, K = H + ∂F1
∂t (75)

Generating function of the second kind:

F2 = F2(q,P, t), pi =
∂F2
∂qi

, Qi =
∂F2
∂Pi

, K = H + ∂F2
∂t (76)

Generating function of the third kind:

F3 = F3(p,Q, t), qi = −∂F3
∂pi

, Pi = −∂F3
∂Qi

, K = H + ∂F3
∂t (77)

Generating function of the fourth kind:

F4 = F4(p,P, t), qi = −∂F4
∂pi

, Qi =
∂F4
∂Pi

, K = H + ∂F4
∂t (78)
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Summary

Certain classical dynamical systems can be described using

Hamilton’s equations:

dx

dt
=

∂H

∂px
,

dpx

dt
= −

∂H

∂x
(79)

where (x, px) are dynamical variables (coordinate x and

conjugate or canonical momentum px); t is the independent

variable; the Hamiltonian H is a function (of the dynamical

variables) that defines the dynamics of the system.

Hamiltonian systems are symplectic: areas in phase space are

conserved as the system evolves (Liouville’s theorem).

We can change from one set of dynamical variables to another

using a formally defined canonical transformation. The new

variables defined by a canonical transformation also obey

Hamilton’s equations, for an appropriate Hamiltonian.
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Appendix A: Dynamics in an Electromagnetic Field

The Hamiltonian is:

H = p · ẋ− L =
(p− qA)2

2m
+ qϕ (80)

The first equation of motion (16) is easy enough:

dxi
dt

=
∂H

∂pi
=

pi − qAi

m
(81)

This reduces to:

mẋi = pi − qAi (82)

which we knew already from the definition of the conjugate

momentum (33).

The second equation of motion (17) needs some work...
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Appendix A: Dynamics in an Electromagnetic Field

Hamilton’s second equation (17) with the Hamiltonian (34)

gives for the x component of the momentum:

dpx

dt
= −

∂H

∂x
(83)

= q

(
ẋ
∂Ax

∂x
+ ẏ

∂Ay

∂x
+ ż

∂Az

∂x

)
− q

∂ϕ

∂x
(84)

Now, if we define a vector field:

B = ∇×A (85)

we notice that:

[ẋ×B]x = ẋ
∂Ax

∂x
+ ẏ

∂Ay

∂x
+ ż

∂Az

∂x
− ẋ

∂Ax

∂x
− ẏ

∂Ax

∂y
− ż

∂Ax

∂z

=
(
ẋ
∂Ax

∂x
+ ẏ

∂Ay

∂x
+ ż

∂Az

∂x

)
−

dAx

dt
+

∂Ax

∂t
(86)
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Appendix A: Dynamics in an Electromagnetic Field

It follows that we can write:

dpx

dt
= q [ẋ×B]x + q

dAx

dt
− q

∂Ax

∂t
− q

∂ϕ

∂x
(87)

If we now define a vector field:

E = −∇ϕ−
∂A

∂t
(88)

then we can write:

d

dt
(px − qAx) = q [ẋ×B]x + qEx (89)

Finally, considering all vector components, we have:

d

dt
(p− qA) = q (E+ ẋ×B) (90)
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Appendix A: Dynamics in an Electromagnetic Field

Given the Hamiltonian (34):

H = p · ẋ− L =
(p− qA)2

2m
+ qϕ (91)

with the conjugate momentum (33):

p = mẋ+ qA (92)

the equation of motion from (17) is (90):

d

dt
(p− qA) = q (E+ ẋ×B) (93)

or:
d

dt
mẋ = q (E+ ẋ×B) (94)

This is just Newton’s equation (1) with the Lorentz force (6).

Note that this was derived for non-relativistic particles: later we

will need to derive a relativistic equation of motion.
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Appendix B: Proof of Equation (51)

The matrix exponential exp(A) can be defined, as for the
exponential of a number, by the series:

exp(A) =
∞∑

n=0

An

n!
(95)

where An is the matrix power of A to the power n. Using (95)
we write:

S exp (tSJ) = S

(
1+ tSJ +

1

2
t2SJSJ

)
(96)

Since S2 = −I, where I is the identity matrix, we can
post-multiply the right hand side of (96) by I = −S2:

S exp (tSJ) = −S

(
1+ tSJ +

1

2
t2SJSJ

)
S2 (97)

Applying the initial factor −S and one final factor of S to each
term in the summation gives:

S exp (tSJ) =
(
1+ tJS +

1

2
t2JSJS

)
S

= exp (tJS)S (98)
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