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Demonstrate feasibility of
using a CMOS sensor for real-
time beam measurements of
proton microbeams at
Birmingham’s MC40 cyclotron

facility.

Investigate effect of PMMA
bolus on beam characteristics.



Motivation

Radiotherapy key aims:
* deliver lethal dose to tumour
* minimise healthy tissue damage

Conventional radiotherapy performed with X-rays or electrons
Protons have several advantages over X-rays

Healthy tissue tolerates a higher dose when delivered via spatially fractionated
radiotherapy

CMQOS sensor will allow real-time dosimetry
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Fig 1. Proton fluence as a function of depth in water with

* Fluence decreases mean range, the depth where half the initial protons
have been absorbed, highlighted [1].

[1] Wayne D Newhauser and Rui Zhang. The physics of proton therapy. Physics in Medicine and Biology, 60(8):R155—-R209, Mar 2015. 5



Why protons?
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[2] Frank S.J and Zhu X. R. Chapter 2 - principles of proton beam therapy. In Proton Therapy, pages 14-24. Elsevier, Philadelphia, 2021. 6



Microbeam radiotherapy i
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* Healthy tissue tolerates a
higher dose [3]

* Peak-to-valley dose ratio
(PVDR) key metric Fig 3. Schematic diagram of two beams forming a lattice over the
target volume with a profile highlighting the PVDR [4].

[3]0. Zlobinskaya, S. Girst, C. Greubel, and et al. Reduced side effects by proton microchannel radiotherapy: study in a human skin model. Radiat
Environ Biophys, 52:123-133, 2013.

[4] H. Fukunaga, K.T. Butterworth, S.J. McMahon, K.M. Prise. A Brief Overview of the Preclinical and Clinical Radiobiology of Microbeam Radiotherapy.
Clinical Oncology. 2021; 33(11): 705-712



Proton Microbeam
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Fig 4. a) Proton minibeam dose map showing homogeneous
tumour dose and b) beam cross-section at several depths
highlighting dose and clonogenic cell survival [5].

critical structures

[5] Sammer, M., Girst, S. & Dollinger, G. Optimizing proton minibeam radiotherapy by interlacing and heterogeneous tumor dose on the basis of
calculated clonogenic cell survival. Sci Rep 11, 3533 (2021). https://doi.org/10.1038/s41598-021-81708-4 8




LASSENA sensor

* Current methods for x-ray microbeams involve GafChromic film — takes days to
develop

 Complementary metal-oxide-semiconductor (CMOS) sensor allows for real-
time beam measurements

PN junction results in a depletion layer
* Protons ionize silicon, electrons are collected at the N-well

e Successfully used for x-ray microbeam measurements [6]

[6] Samuel Flynn, Tony Price, Philip P. Allport, lleana Silvestre Patallo, Russell Thomas, Anna Subiel, Stefan Bartzsch, Franziska Treibel, Mabroor Ahmed, Jon Jacobs-Headspith, Tim
Edwards, Isaac Jones, Dan Cathie, Nicola Guerrini, and lain Sedgwick. First demonstration of real-time in-situ dosimetry of x- ray microbeams using a large format cmos sensor.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 978:164395, 2020.



Project outline

* Measurements made at Birmingham’s MC40 cyclotron with 36MeV proton beam
e Scattered, collimated beam
* Experiments:

* Current calibration

* PVDR at varying distance in air

 Measurements through increasing depth of PMMA

e GafChromic film at Omm, 3mm and 7mm in air and 3mm in PMMA



Collimators

* Ta, 2mm thick, 100um slit width, 500um c-t-c spacing

* Measured using SmartScope in clean rooms

Collimator Slit spacing
(km)

102 £ 4 3992

2 127 £5 3727

each Ta collimator. collimator. made with SmartScope.
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Calibration

* 2x2cm? field size

e Sensor at nominal Omm

* Charge and integration time recorded
* Dark frames taken periodically

e Separate measurements with Markus chamber

Current calibration curve
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Fig 7. Set-up for taking calibration data.

Fig 8. Current calibration curve with a linear fit to data points below 10000 digital units.
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Alr
measurements:
set-up

e 2 collimators

At nominal Omm
position sensor face

approx. Imm from
collimator

* Sensor moved back in
steps of Imm

* Measurements
repeated over both
experimental days
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Fig 9. Pictures showing a) sensor face, b) set-up with rulers, c) gap betw%en
collimator and sensor face at Omm and d) collimator on end of beam-line.



Air measurements: results

omm collimator to sensor distance in air - 13mm collimator to sensor distance in air
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Fig 10. Beam image at a) Omm and c¢) 13mm with corresponding profiles (b) and (d) of signal value averaged across 100 columns.



Air measurements: results (2)

PVDR as a function of distance from collimator in air  Mean peak and valley height as a function of distance from collimator in air
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Fig 11. PVDR as a function of distance in air from the Fig 12. Mean peak and valley heights as a function

collimator measured on consecutive days. of distance in air from the collimator.
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PMMA measurements

e 72 collimators

* PMMA of increasing thickness
taped to front of collimator

e Detector moved forward to
corresponding position on ruler

so that there was no air gap
between detector and PMMA

* Charge and integration time
recorded to account for
fluctuations of beam current

. Set-up

CMOS sensor

PMMA block

taped to
collimator

Fig 13. Set-up with
PMMA in place and in
contact with sensor

face.
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PMMA measurements: results (1

2mm depth in PMMA
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Fig 14. Images of the beam at a) 2mm, ¢) 9.5mm and e) 10mm depth in PMMA. Corresponding profiles of the pixel signal averaged

across 100 columns are shown in b), d) and f).
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PMMA measurements: results (2)

* Shape of curve a combination of proton scattering and increased stopping power
* PVDR at 3mm depth in PMMA 9.97+0.08 compared with MC simulation 9.1+0.1

Mean peak height as a function of depth in PMMA
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Fig 15. Depth dose comparison for 16MV X-ray beam and
200MeV proton beam in a 10x10cm? field [2]. Fig 16. Mean signal normalized to current value as a function of

depth in PMMA.

[2] Frank S.J and Zhu X. R. Chapter 2 - principles of proton beam therapy. In Proton Therapy, pages 14-24. Elsevier, Philadelphia, 2021. 18



Next steps

* Refine code for data fitting

* Dose conversion

* Analyse Monte-Carlo simulation data for PMMA
 Compare simulations with results

 Compare with film results



Ssummary

e CMOS sensor allowed real-time beam measurements

PVDR comparable with proton minibeam PVDR measured at Institut Curie
Proton Therapy Center [7]

* Scattering in air significantly decreased PVDR
* Bragg peak and distal fall-off witnessed in PMMA
* PMMA simulation data comparable with results

e Continue analysis of experimental and simulation data and compare with film
dosimetry

[7] Peucelle C, Nauraye C, Patriarca A, Hierso E, Fournier-Bidoz N, Mart inez-Rovira |, and Prezado Y. Proton minibeam radiation
therapy: Experimental dosimetry evaluation. Med Phys, 42(12):7108-13, 2015.



