

Science and Technology Facilities Council

FFA for Stage 2: Design and Tracking

J.-B. Lagrange on behalf of LhARA Collaboration ISIS, RAL, STFC

©FFA ring parameters

Tracking

Injection and extraction

©R&D

Summary

Science and Technology Facilities Council

©FFA ring parameters

Tracking

Injection and extraction

©R&D

Summary

Science and Technology Facilities Council

- Proton max acceleration range (15 - 127 MeV)
- \bigcirc Geometrical field index *k*=5.3
- Logarithmic spiral angle 48.7 deg.
 Transverse tunes (2.83, 1.22)
- (~60 cm excursion)

FFA ring parameters

Maximum B field 1.4 T

 \bigcirc Packing factor $p_f=0.34$

Proton RF frequency 2.89 – 6.48 MHz (h=1)

Bunch intensity ~10⁸ protons / bunch

Variable extraction energy

Variable extraction energy from FFA within 1 s (20-125 MeV) at fixed geometry

+

pulse by pulse variation with kicker could be implemented

Variable input energy from the Laser Source (multiple ions are possible)

Science and

Technology Facilities Council

Gereal FFA ring parameters

Tracking

Injection and extraction

©R&D

Summary

Science and Technology Facilities Council

Performed in FixField code

Includes non-linearities, fringe fields

Single particle tracking

No space charge

JB Lagrange

7

Science and Technology Facilities Council

Tracking - Optics - DA

©FFA ring parameters

Tracking

Injection and extraction

Science and Technology Facilities Council

Injection optics

• Stage 1 is tuned to match the injection line

- Focus point changes location and requires a dedicated collimation system
- Focusing can be realised with normal conducting solenoids

Science and

Optics from the switching dipole to the injection septum has been designed

Extraction optics

Optics for Stage 2 in-vitro end station, the arc optics scaled from the Stage 1

Optics for Stage 2 in-vivo end station, a dedicated final focus has been designed

Output A Horizontal tune is moved at extraction energy to 3rd order nonsystematic resonance (3Qx=8)

Tracking without error shows good acceptance

Gereal FFA ring parameters

Tracking

Solution and extraction

Science and Technology Facilities Council

FFA main magnets specifications

structure	Spiral singlet
aperture	~ 0.6 m
gap height	50 ~ 200 mm
length	0.6 m
field strength	1.4 T max.
spiral angle	48 deg
field index k	5.3

Science and Technology Facilities Council

JB Lagrange 14

main coli

0.6 m

Vector Fields

side view of a magnet

return dei für den fluctore

man col

Magnets manufacturing options

$$B_z = B_0 \left(\frac{r}{r_0}\right)^k F(\theta)$$

A) change gap height along radius

Ref. D. Neuveglise, et al, Proc of PAC09 (2009) 5002.

 $k = \frac{r}{B_z} \frac{dB_z}{dr}$

Second FFA ring parameters

Injection and extraction

◎R&D

Summary

Conceptual design of Stage 2 in good shape

dynamic aperture

Injection and extraction designed and look feasible

- Good performance of the cost-effective FFA lattice in terms of optics and

