Stage 1: Design & Tracking

William Shields

(william.shields@rhul.ac.uk)

LhARA Collaboration Meeting

27th April 2022

1. Stage 1 overview

2. Stage 1 performance evaluation with MC simulations

3. Deliverable Dose Estimation

4. Stage 2 injection line performance

The LhARA Accelerator

Pre-conceptual design report (pre-CDR) publication:

Aymar, G. et al, Frontiers in Physics, (8), September 2020, 567738

Full pre-CDR Technical Note:

https://ccap.hep.ph.ic.ac.uk/trac/rawattachment/wiki/Communication/Notes/CCAP-TN-01.pdf

Stage 1 Overview

- Beam:
 - Up to 15 MeV protons & ions
- 2 Gabor lenses in the capture section
- 3 further lenses for matching & energy selection
- RF cavities for longitudinal phase space manipulation
- Octupole & collimation for symmetric, uniform dose delivery
- Vertical matching arc & end station delivery

Beam from Laser-Target Beam to in vitro **End Station**

Stage 1 Design Parameters **CCAP**

W Shields

Particle Tracking

- MADX: Initial design
- Hybrid Monte Carlo strategy:
 - BDSIM: Accelerator tracking + particle-matter interactions (Geant4)
 - GPT: Particle tracking + space charge forces
- Gabor lenses modelled as equivalent strength solenoids

Adams Institute

ROYAL HOLLOWAY

- Low energy contaminants between S=0-5cm
 - S=5-10 cm modelled with space charge
- Excellent tracking agreement between tracking codes
 - Idealised beam
- Small space-charge induced emittance growth

Beam Phase Space

John Adams Institute for <u>Accelerator Science</u>

- Phase space aberration arises in Gabor lenses / solenoids
- Octupoles & collimation improves beam uniformity
- ~30% reduction in transmission – collimator settings to be optimised.

Deliverable Dose Estimation

ROYAL HOLLOWAY Adams Institute 1.3 mm 0.075 mm 0.25 mm Sample Vacuum Scintillating 0.03 mm Container Window Fibre Laver Cell Layer Base 2.4 mm 5 mm Water Air Gap Mono 10 MeV 14 Energy Loss [GeV/m/proton] Mono 12 MeV 12 Mono 15 MeV 10 8 6 4 2 · 0 0.004 0.000 0.002 0.006 0.008

Depth [m]

- BDSIM energy deposition in end station target materials (H.T. Lau, IC).
- Monoenergetic idealised beams
 - Radiobiological effects from different Bragg curve regions
- 12 MeV beam closest
 Bragg peak to the cell layer
 - Total energy deposited in the cell layer was 9.63 × 10⁻⁶ Gy
 - 5.16 Gy for full 10⁹ proton bunch
- Equivalent water phantom volume simulated at Bragg peak depths
- 15 MeV proton beam average dose rate of 128 Gy/s
 - 10 Hz repetition rate

Semi-Realistic Beam

- Sampled beam from laser-target interaction simulation in Smilei (PIC code)
 - 3D distribution approximated from 2D simulation output
- Momentum cleaning collimator before first Gabor lens
 - Removal of low energy particles

H.T. Lau, IPAC 2021: <u>WEPAB139</u>

- Early discrepancy mitigated by downstream collimator (S=6m).
- Ongoing optimisation studies.

W. Shields

27th April 2022

Injection Line Performance CCAP

- Beam simulated in GPT with & without space charge.
- Good agreement between **BDSIM** and GPT without space charge.

- Emittance growth observed when modelling space charge forces.
 - Final dimensions do not match FFA cell requirements optimisation is required.
- Horizontal beam size jumps due to GPT output capturing the bunch partially within sector-bend fields
 - Strategy needed to mitigate GPT simulation output control

Gabor Lens Aberration

- Replaced solenoids with limited Gabor lens field map (T. S. Dascalu, IC).
- Minimal impact on optical performance compared to solenoid optics.
- The aberration the result of a solenoid-like field. Possibly unavoidable.
 - Potentially acceptable by FFA ring, but further understanding needed

- Momentum selection collimator aperture radius set to 0.5mm (the settings for stage 1 in vitro energy collimation).

- Heavy losses are observed with < 1% of the beam reaching the FFA septum magnet.
- Energy deposition is mostly restricted to within +/- 2m of the collimator.
- New collimator settings are required for energy selection through the injection line.
 - Beam line transmission must be considered.

- Successful stage 1 design capable of dose delivery into the FLASH regime.
- Number of validated Monte Carlo models
 - Well supported workflow
 - Ideal functionality for future studies
- Optimisation studies identified
 - Emittance growth due to space charge
 - Collimator settings
 - Transmission efficiency

- ...

