

Collaboration meeting 27 April 2022 WP1.3 - Capture

Christopher Baker (Titus, Mike, Stefan, Will)

Gabor lens – basic overview

Discharge vs. Non-neutral plasma apparatus

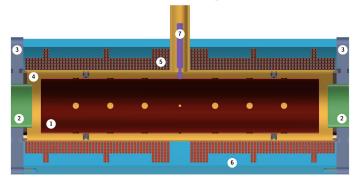
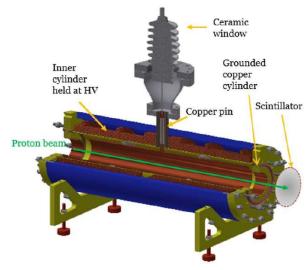



Figure 1. Internal structure of the IC Gabor lens viewed in longitudinal cross-section. The main components are: 1-central anode, 2-end electrodes, 3-end flanges, 4-vacuum tube, 5-pancake coils, 6-outer tube, 7-high-voltage feed-through.

Appl. Sci. **11** 4357 (2021) Proc. IPAC2016 TUPMY024

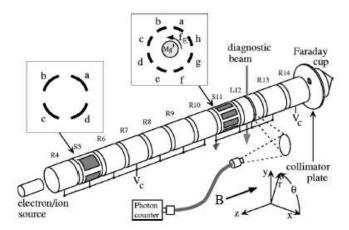
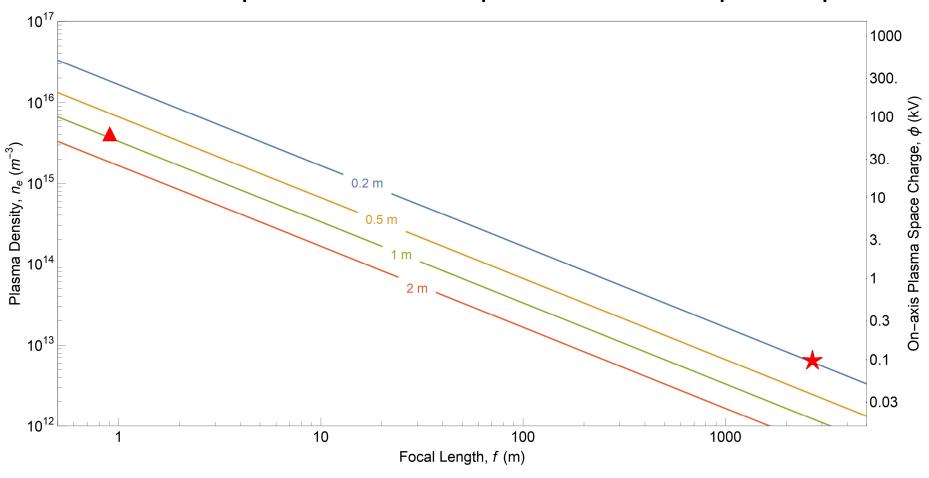



FIG. 1. Schematic of the IV Penning-Malmberg trap used for electron and ion plasma experiments. Electrons are typically confined in the region S5 → S11; Mg⁺ ions (shown) are typically confined in the region S11→R13. A laser diagnostic is used for ion plasmas; a collimator plate and Faraday cup diagnostic is used for electron plasmas. Azimuthally-dependent modes are driven and detected with sectored rings (S5 and S11).

Phys. Plasmas **7** 2776 (2000)

Non-neutral plasma lens parameter-space plot

Original programme

- Parallel streams:
 - Years 1-2
 - Upgrade Swansea apparatus to operate at higher voltages
 - Study parameters to guide new design (hardware cost vs. specification options)
 - Validate simulations with higher voltages
 - Study parameters to guide new design
 - Design, order, assemble new testbench
 - Years 3-5
 - Testbench
 - Commission months 24-30
 - Systematically study several plasma parameters (density, length, radius, etc.) months 30-54
 - Numerically study plasma produced & those beyond apparatus capabilities
 - Interface with ion source & validate simulations months 54-60
 - Finalise 'final' Gabor lens design months 57-60

New programme

- Parallel streams:
 - Years 1-2
 - Use Swansea apparatus to study a plasma parameter (radii)
 - Numerically study experimentally produced plasma & testbench configurations
 - Design new testbench
 - Years 3-5
 - Testbench
 - Order & assemble months 24-36
 - Commission months 36-39
 - Systematically study several plasma parameters (density, length, radius, etc.) months 40-54
 - Numerically study plasma produced & those beyond apparatus capabilities
 - Interface with ion source & validate simulations months 54-60
 - Finalise 'final' Gabor lens design months 57-60

Non-neutral plasma lens parameter-space plot

Proposed Costs

	Original	New
Year 1-2 – FTE	10.5	2.5
Year 1-2 – Cost	£1.8M	£0.4M
Year 3-5 – FTE	16.5	25
Year 3-5 – Cost	£2M	£4M
Total FTE	27	27.5
Total Cost	£3.8M	£4.4M

Above exclude costed risks

Critical changes

- Years 1 & 2
 - Junior researcher
 - Limited PI/supervisor time
 - No dedicated technical support
 - Heavily reliant on pre-existing expertise (& apparatus) from existing projects
 - Not guaranteed
- Years 3, 4 & 5
 - Additional PDRA required
 - Additional PI/supervisor time
 - Additional technical support
- Equipment
 - Removal of 'off-the-shelf' apparatus testing
 - Removal of an intermediate step
 - Increased bespoke designs outsourced

Milestones / Objectives

Year	
0.5	Validate plasma simulations with existing Swansea experimental set-up
1.5	Progress report of large diameter plasma experiments and simulations
2	Next generation plasma lens testbench design
3	Progress report of standalone plasma apparatus build and commissioning
4	Progress report of large particle number plasma experiments and simulations
5	Ion focussing results & final plasma lens design

Questions?