

ITRF and LhARA

Hywel Owen, UKRI-STFC-ASTEC-AP Accelerator Science and Technology Centre

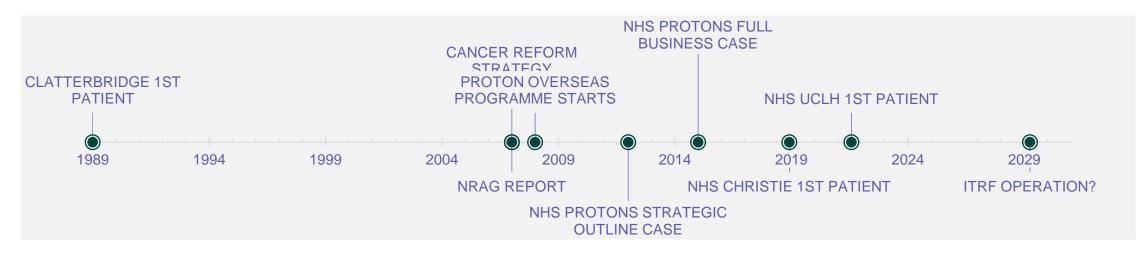
27th April 2022 LhARA Collaboration Meeting, https://indico.stfc.ac.uk/event/517/

ITRF and LhARA

- 1-Page Summary:
- ITRF and LhARA have differing origins but overlapping scope and aims
- ITRF (Ion Therapy Research Facility)
 - The stepping stone from today's proton therapy toward tomorrow's ion therapy; radiobiology needed
 - Technology background: EMMA, PAMELA; Networks: EUCARD2, EPSRC & STFC Networks EP/R023220/1 and ST/N002423/1, EU INSPIRE
 - Clinical background: Roadmap from overseas programme -> clinical protons -> ions
 - ITRF is 1st stage in establishing case for ion therapy for the UK
- LhARA
 - The most exciting technology direction for the production of multiple ion species
 - Enables paradigm-shifting radiobiology research and technology development for ion therapy
- LhARA is the preferred technology option for ITRF but a CDR is needed to establish feasibility

ITRF Summary

- Context:
 - Radiobiology not sufficiently understood for UK clinical case
 - Recent spend on UK proton therapy means clinical funding unlikely now
 - Technology developments needed for highintensity treatment, particularly FLASH
- ITRF is part of a roadmap:
 - Radiobiology with protons
 - ITRF technology and radiobiology programme
 - Clinical/cost case to UK Gov
 - Construction
- Multiple partners, including CI, JAI, Christie etc.
- Advisory Committee (Chair: Prof Neil Burnet) representing clinical and technological community; 3 meetings so far



- TIMELINE
- 2008 onwards growing STFC discussions and involvement, various white papers on research and roadmaps
- EUCARD2 workshop on ion therapy 2016 <u>https://indico.cern.ch/event/456299/</u>
- White papers to STFC 2015/2016 on ion therapy
- SPF outline 2018
- UK community workshop 2019; position paper <u>https://www.birpublications.org/doi/10.1259/bjr.20200247</u>
 - community consensus on need for ITRF
- SPF outline 2020
- IAC case: 2 year Prelim Activity (CDR) costing and some technical design; under review
- 2 year TDR
- 3 year construction

What we have bid for

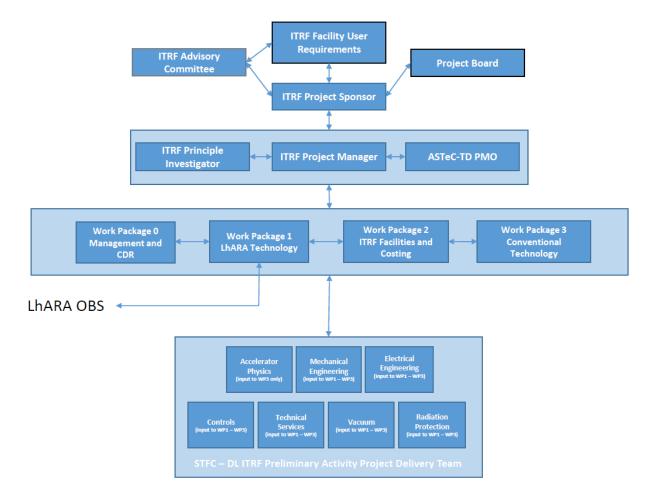
A tentative roadmap

	YR	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
ITRF	PA1 ITRF Conceptual Design																				
	PA2 ITRF Technical Design																				
	Construction																				
	ITRF research - physics + pre-clinical biology																				
lon	Appraisal of clinical evidence																				
Overseas	Partner Research Programmes																				
Programme	Referral Programme																				
	Cost Analysis																				
CRTF	CRTF Technology Collaborations																				
	CRTF Conceptual Design																				
Clinical	CRTF Technical Design																				
Research &	CRTF Tendering																				
Treatment	CRTF Construction																				
Facility	Commence clinical research & treatment																				

Daresbury Laboratory

The 2-Year Preliminary Activity

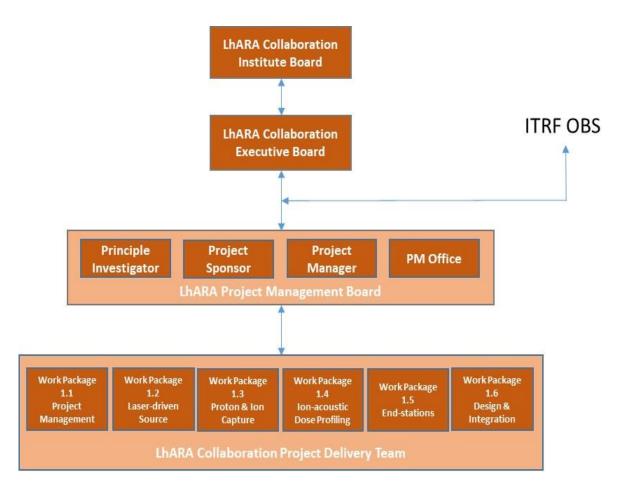
- STFC submission to UKRI Infrastructure fund
- Iteration on scope of study recommend Preliminary Activity (2 years) to compare feasibility of differing options
- Bid commits to the following items:
 - CDR design scope, usage model
 - Definition of end station and beam specification to support a biomedical research programme; staged in-vitro and in-vivo delivery
 - Technology choice and technical risk management; comparison of 3 technology options
- Current guidance:
 - Good chance of funding; assume start date 1st October 2022
 - Aim at Y1 0.7M and Y2 1.3M (but some flexibility)


OBS, WPs and PM

- STFC has an established project management methodology that we are required to follow
- Already had to meet STFC internal annual budget and effort definition (Feb/Mar)
- Project initiation is done via Bid Review; proposed 25th May
 - Budget

Science and Technology Facilities Council

Daresbury Laboratory


- Deliverables/Milestones
- WPs and responsible WP manager
- Review and oversight (Monthly Progress, 6 monthly Reviews)
- As an STFC project, required to have STFC sponsor/PM/PI
 - Propose LhARA-focused WP to minimise overhead and allow LhARA collaboration oversight
- Costing activities carried out by STFC
- Funding disbursement via JeS (tbc)

LhARA WP1.1 to WP1.6

- Each WP should have:
 - Single named manager
 - Final deliverables
 - (Interim deliverables)
 - Milestones (incl. for review)

- Proposal is that WP1.1 / LhARA PM provide single reporting line
 - Avoids WP overheads

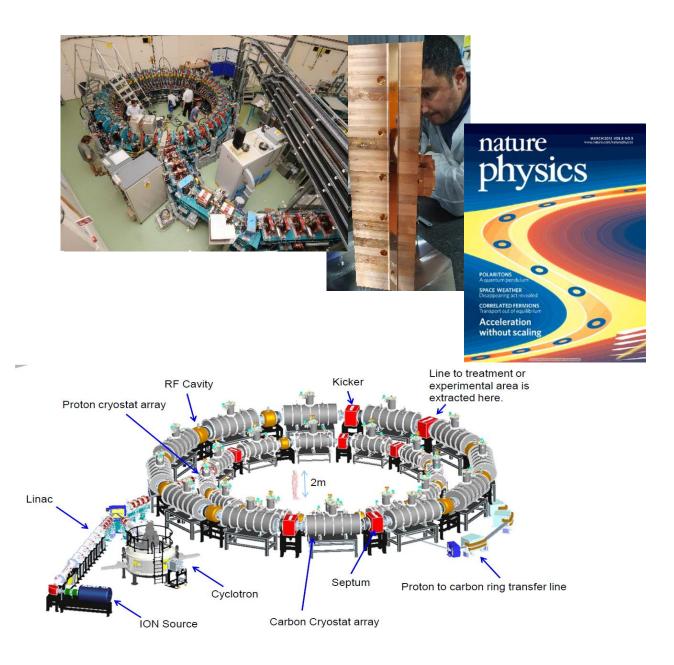
Additional slides....

The Clinical Context

- 1989: Clatterbridge UK world's 1st hospital proton therapy centre (62 MeV, ocular); 100 patients/year
- 2007: NRAG report 'Radiotherapy: developing a world class service for England' recommends proton facilities
- 2007: Cancer Reform Strategy
- 2008: Proton Overseas Programme; 1102 patients (2008 – 2018) <u>https://doi.org/10.1016/j.ijrobp.2020.07.2456</u> <u>https://doi.org/10.1016/j.clon.2018.02.032</u>
- 2012 NHS Strategic Outline Case
- 2015: Full Business Case approved for 2 NHS centres
- 2018: NHS Christie 1st patients seen as a big success story
- 2021: NHS UCLH 1st patients

Clatterbridge – 62 MeV Scanditronix cyclotron Basis for much UK technology and clinical-related research

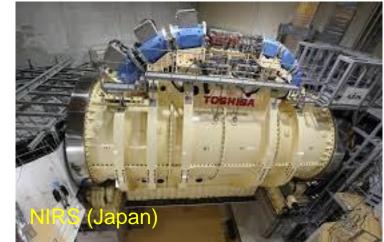
Christie – 250 MeV Varian cyclotron + unique research beamline

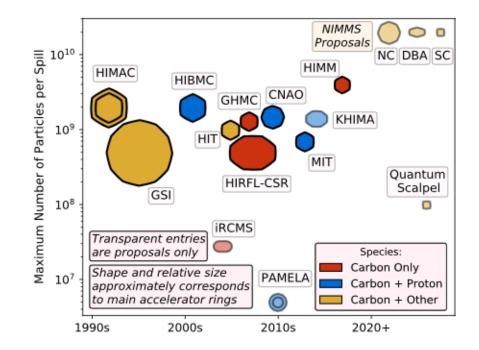

Protons in UK:

- Evidence-based
- Intention to cure
- Emphasis on children, young adults (<25), adults with rare tumours

The (Conventional) Accelerator Context: Protons

- 2007 2013 EMMA @ DL
- 2008 2013 PAMELA
- 2013 2015 NORMA
- 2015 2019 PROBE
- 2018 2021 TAAC70 Cyclotron
- Christie proton centre 2018 –
- Christie proton beamline 2019 -




Ion Therapy Context

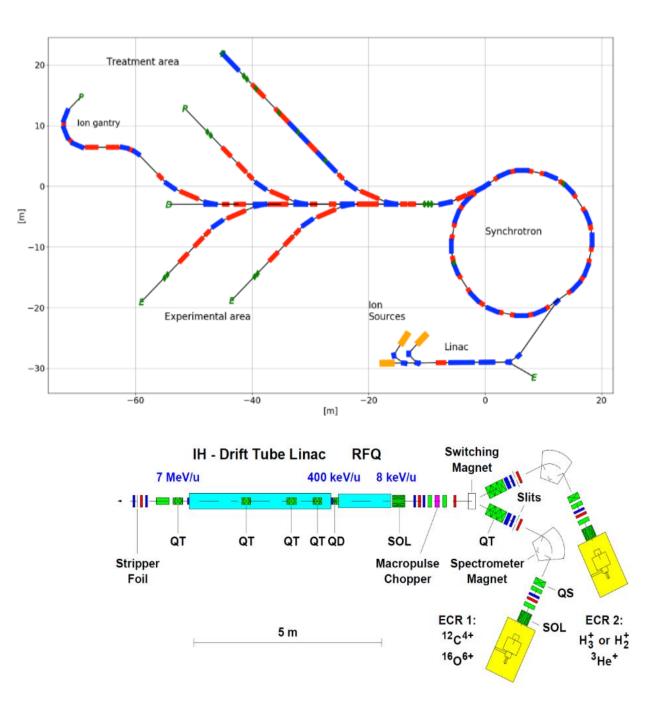
- 1994 HIMAC (Japan)
- 1998 2008 GSI
- 1999 PIMMS study
- 2012 CNAO/HIT 1st patients
- 2019 MedAustron 1st patients
- 2019 NIMMS study begins

2 ion gantries operating in the world today

13 ion centres operating in the world today – all synchrotrons

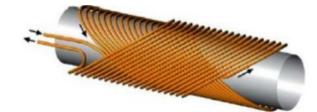
NIMMS @ CERN

- PIMMS > NIMMS
- Linked to SEEIST

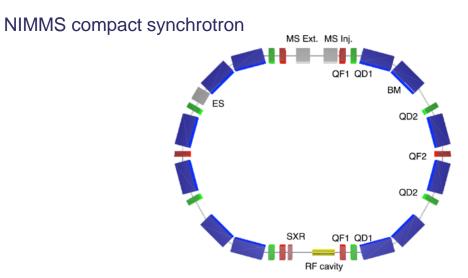

Science and

Technology

Daresbury Laboratory


Facilities Council

- 3 UK students working on NIMMS:
 - UOM CCT synchrotron/gantry (CI)
 - UOM FFA/Synchrotron (CI)
 - Imperial Synchrotron (JAI)
- STFC/CERN Framework Agreement (virtually) signed; access to design information and collaboration



The Path to SC Ion Therapy

TREATMENT AREA 46.90 ERVICE ARE 8 8 ION GANTRY ION GANTRY SER. AREA LOW. EN. EXP. SERVICE AREA OR LINA0 15.00 10.45 ____ 8.70 1.00 ANIMAI AREA AREA: 5.500 M2 ACCESS AREA / SERVICE AREA 53.00

Table : Detailed parameters of the proposed DBA lattice.

Circumference length	55 m
Max energy	430 MeV/u
Dipole length	2.31 m
Max dipole strength	1.5 T
Working point (Q_x, Q_y)	(1.67, 1.72)
Transition gamma γ_t	1.742
Natural chromaticities ξ_x , ξ_y	-1.1,-1.3
QF1 strength	1.05 m ²
QF2 strength	0.8 m ²
QD1 strength	-1.3 m ²
QD2 strength	-0.65 m^2

CT and CCT magnet development (synchrotron and gantry)

Daresbury Laboratory