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Uses of High Voltage in Particle
Accelerators

Extracting beams (up to 50 kV)

Accelerating beams (up to 28000 kV)

Initiating discharges / pre-ionising gases (up to 20 kV)
Focusing and deflecting beams (up to 50 kV)
Suppressing unwanted particles (up to 5 kV)



lon sources are particularly challenging
for HV design

Explosive gasses (hydrogen)

High temperatures

Other contaminants (e.g. Cs)
Magnetic fields

Large amounts of charge carriers
Stray beams: electrons and ions
X-rays

Compact design



Main aim of high voltage design:

Produce reliable breakdown

... Where we want it
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prevent breakdown

...where we don’t want it



Electrical Breakdown

 Global Breakdown

— Complete rupture or failure of the insulation
between two electrodes

e Local Breakdown

— Partial breakdown of part of the insulation
between two electrodes



Electrical Breakdown

* Electric field strength is the primary factor

* |n general electrical breakdown is most likely
to occur where the electric field is highest, but

this depends on:
» Materials and gasses
» Pressures
» Temperatures
»Surfaces

»Magnetic fields
» Stray beams
»Charges
»Photons



Electric Field

* Potential gradient, electric field strength,
electric field intensity, stress, E

e Units of Vm1, kVm?1 kVmm= kVcm-1

* Equations, Analytical , Empirical, Numerical



Maxwell’s Equations
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Using Laplace's Equation
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Similarly....
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thankfully we have computers




3D Modelling Software- Commercial

and Open Source
CST

gs DASSAULT

SHYSTEMES

\nsys

\'Sim

NH COMSOL

Vector Fields =4

software for electromagnetic design

Fiesid
PRrRecCcision

Plus many others...



Electrical Discharges
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Avalanche

John Townsend
"Townsend discharge"
1897
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Townsend Secondary lonisation Coefficient, y

Y is the number of secondary electrons produced per
electron in the primary avalanche

7/:7/ion+7/p+7/m
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"Townsend discharge"
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Townsend Criterion for Breakdown
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Corona

*Corona is a type of partial discharge occurring in divergent fields

*Divergent fields are caused by sharp points

Equipontentials




Corona

*Corona is a type of partial discharge occurring in divergent fields

*Divergent fields are caused by sharp points

Electric Field




Corona

*Corona is a type of partial discharge occurring in divergent fields
*Divergent fields are caused by sharp points

*Discharge behaviour is dependant on polarity

Positive point Negative point
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Electrode Design

*Minimise Electric Field by making smooth
rounded electrodes

*Shield any sharp points with corona shields
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Statistical Variability

Even with identical conditions the same electrode gap will breakdown at
different voltages each time the voltage is applied. This is because of the
statistical nature of high voltage breakdown: no two sparks are ever the

Same.
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Environmental conditions

Higher temperatures and lower pressures lead to lower flashover voltages. A
correction factor for V50% can be found from this equation:

where P is in mmHg and t is in degrees centigrade.

Humidity can also
affect breakdown
voltage
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Polarity is important in Non Uniform Gaps
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Dependant
on power
supply and
what is
between
electrodes
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Paschen Curve
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Paschen Curve

1.E406

1.E405 -

1.E404 -
1.E403 -

1.E+02

Breakdown Voltage (V)

0.1 1 10 100 1000

pd {mBar cm)

Operating just below the Paschen Minimum:

Longer gaps have
Friedrich Paschen 1889 lower breakdown voltages!
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Insulating
micro-
inclusions

can also cause

field
enhancement

Vacuum Breakdown
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Breakdown strength of Air

In air at normal room conditions two electrodes
require about 30 kV for each cm of spacing to
breakdown (as a rule of thumb)

Or 3 kVmm1



Insulators

Something has to hold up the electrodes




Localised
Electric
Field

Surface Breakdown

Ambient Insulator surfaces are

Electric

Field the weakest part of the
insulation system

° Electrons
Photons
O Neutral Gas Molecules
O Neutral Surface Molecules
(O Positive lons (Gas Molecules)
(O Negative lons (Gas Molecules)
O Positive lons (Surface Molecules)
O Negative lons (Surface Molecules)




Impulse voltages applied
to a rod-plane gap with
PTFE insulator between




Surface Charging
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Polarity is very

important if the gap is
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Triple Junction Effect
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— -1
—] INSULATOR AIR |1 | INSULATOR AIR [© -] INSULATOR AIR [ —] INSULATOR AIR :(kVEnOO)
e — — 0.93
e

e ] e

e s ] e —— 0.86
e S ] L —————— R e

——

— - —— 1 R079

Field Strength Equipotentials

4mm Triple

Junction

AIR

INSULATOR

2m Triple
Junction

INSULATOR

AIR

Imm Tripe
Junction

INSULATOR

0.5mm Triple

AIR 0.65

0.58

0.51

0.44

0.37

0.30

Junction

PTFE (€, = 2.2) ambient field of 0.5 kVmm™



Triple junctions always exist at some scale
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Region
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Triple Junction Screening
1 mm PTFE triple junction ambient field of 0.5 kVm-™!
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Electrical Breakdown

 Global Breakdown

— Complete rupture or failure of the insulation
ween two electrodes

 Local Breakdown

— Partial breakdown of part of the insulation
between two electrodes



Partial Discharges







Antenna power feed sparking
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Insulator Materials

Depends on application!

For example:

Al,O; is commonly used in vacuum

AIN is used when a high thermal conductivity is required
Macor is used when a complex shape needs to be machined
Porcelain is used in compression

Epoxy resin is used to impregnate and pot

Mica is used for thin high voltage withstand

Glass is used when visible transparency is required

XLPE is used for extrusion in cables

Rexolite is used for high frequency RF



Commercial Insulators

* Dirt, dust and waterproof

* Sheds increase tracking
length and protect sections

of surface

A well desighed insulation
system is one you don’t
ever have to worry about




High voltage
platforms don’t
have to be too
complicated, but...




Water and
home-made
insulators
don’t mix










Commercial
insulators are
relatively cheap
(=€200) and will
work in all
conditions




Cable terminations

Correct electrostatic termination of high voltage cables is essential

FOUPOTERTIAL LINES .
0% Un-terminated

=0% ' iy
Sharp ™ e @  earthscreen

i, EQUFOTENTIALLINES. Hjgh permittivty

LSRR stress cone
ANV s 2

Stress cone electrode

40%,  EQAUIMDTENTIAL LINES

e High permittivty

sleeve
Correct impedance termination of
pulsed cables is also important —
voltage reflections




Connectors and Feedthroughs

Depends on...
e Application
* Maintenance
* Permanence

* Voltage

> 50 kV needs
feedthroughs
or bushings




Big Bushings

Conductive layer
(foil or ink) Plain paper
Conductive layer

: Conductor & condenser
winding tube

|




High Voltage System Design
Philosophy

High voltage platform or internal
chassis isolation?

Pros and cons:

Maturity/reliability/space

il
L

!




|Isolated Power

How to get power to
equipment floating on
the HV platform?

Waveguide DC break

Isolation transformer



Earthing

An earthing system should grow like a tree

Solid single point earth High voltage platform becomes
“Local earth”



Power Supply Technologies

Transformers

Semiconductors: Diodes, Transistors, Thyristors, IGBT
Linear or switched mode

Cascade rectifier (Greinacher/Cockcroft—Walton multiplier)

Electron and gas discharge devices:
o Tetrode, thyratron etc. for switching
o Klystrons, magnetrons etc. for RF

Pulse Forming Networks PFN
Vandergraph, Peloton



High Voltage Power Supply Manufacturers

#GLASSMAN HIGH VOLTAGE INC. SI EM ENS

Heinzinger, "
[Yel DANFYSIK bohh
A subsidiary of Danish Technological Institute S
ETPS Limited /

LJ ULTRAVOLT [E_]m

Making High Voltage Easier!®

high voltage power supplies

®

DIVERSIFIED TECHNOLOGIES, INC,

HiTek

(<)
Power ema "AHV_
m ] AMERICAN HIGH VOLTAGE

AN ISO 8001 COMPANY

¥ Matsusada Precision GHhKEPCO.

APPLIED T POWER SUPPLER ™
I LOVO LTS %TDK TDK-Lambda

\/Spellman ) GAMMA “mjais

5,
h Vi i i A 74
High Voltage Electronics Corporation BijSterrE



Custom Built Power Supplies

* Tight specification is essential if engaging a
manufacturer

* Or of course you could make your own if you
have the experience...



Safety

* Electric Shocks can kill
e Stored energy in capacitors

%CV? =0.5x 1 uF x 30 kV =450
* X-rays



Electric Shocks

Hand to hand resistance:
100 kQ dry/thick skin
1 kQ wet/broken skin

Stratum corneum

Stratum lucidum

* The stratum corneum S Stratum granulosum
breaks down 450-600 V h
IeaVIng 500 O | B Stratum spinosum

* You can feel 5 mA

e 60 mA can fibrillate the
heart




HV Safety Philosophy

. Impossible to accidently lock someone in the
HV area.

. Ability to shut down the power inside and
outside the HV area.

mpossible to power on the HV without
ocking the area.

mpossible to enter the HV area without
making it safe.



HV Safety Philosophy

1. Impossible to accidently lock someone in the
HV area.
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HV Safety Philosophy

2. Ability to shut down the power inside and
outside the HV area.
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HV Safety Philosophy

3. Impossible to power on the HV without
locking the area.
























HV Safety Philosophy

4. Impossible to enter the HV area without
making it safe.
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Automatic
Earthing
System




Automatic
Earthing
System










Earth stick should
be hung just inside
the entrance of the
high voltage area




You can never prevent humans from circumventing
safety systems...

But you must make sure that they require some effort to wilfully bypass

Complacency and familiarity can kill



Thank you for listening



Example of very bad safety systems:

Cautionary tale of Dr. Jon Osterman...






Let that be a lesson!



