Exotic particle searches with ATLAS Run 3 data and preparing Tracking software for High Luminosity LHC

Tim Adye, Tracey Berry

Science and Technology Facilities Council

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Large Hadron Collider

- LHC first started serious data taking in 2011
 - Run 1, ran at up to 75% nominal luminosity, culminated in discovery of Higgs boson
- LHC Run 2 finished at end of 2018
 - Reached 2 times nominal luminosity, delivered over 5 times data of Run 1
- Now completing Long Shutdown 2 for upgrade for Run 3 (2022-2026)
 - Machine consolidation, Phase-I upgrades to ATLAS
- Long Shutdown 3 starting in 2026 for upgrade to HL-LHC
 - Phase-II upgrades to ATLAS for 5–7 times nominal luminosity in Run 4 (from 2028).

ATLAS

- One of two general purpose detectors at the Large Hadron Collider
- Different subsystems in layers around collision point to record: trajectory, momentum and energy of particles

ATLAS Collaboration

- Worldwide effort
 - Beyond the scientific authorship, significant engineering effort: ~1000 people

eaflet | © OpenStreetMap © CartoDE

ATLAS UK

- 14 universities + RAL PPD
 - PPD has good links with all ATLAS UK universities
- RAL also hosts the UK Tier-1 computing centre
 - Dedicated internet link to CERN
 - Complete copy of LHC raw data

Dublin

LAND

RAL ATLAS group

- 21 staff (physicists, engineers)
- <u>3 PhD students</u> (with Glasgow, Warwick, Birmingham)
 - soon to be 5!
- Photos not comprehensive

RAL activities

- Built and operated SemiConductor Tracker and trigger systems in Run 1 and 2
- Phase-I upgrades: now being installed for Run 3
 - Level-1 Calorimeter Trigger and High Level Trigger
- Phase-II upgrades: installation in 2026-8 for Run 4
 - Level-O Global Trigger, Event Filter and new Inner Tracker (ITk)
- Diverse physics involvement:
 - Higgs, searches for new heavy bosons, B-physics

ITk (see Ben's talk)

- Inner Tracker is a new all-silicon detector for ATLAS
 - will replace the current Inner Detector, when it reaches its end of life in 2026
- RAL group working on barrel strips, endcap pixels, and overall reconstruction software
 - Design, data acquisition, assembly and eventually operation

Wealth of ATLAS data

- In Runs 2 and 3, LHC collides bunched beams of protons 40 million times per second
 - Every time the bunches cross, multiple protons collide
 - Typical "pile-up" of 35, but can be much more
 - e.g. real example from 2016 with 85 collisions
- In Run 4, expect an average of 200 collisions each time bunches cross
- Interesting collisions at much much lower rate
 - 1 Higgs boson per 10 billion collisions, some processes only a few collisions per year ($N = \sigma L$)
 - We want just the interesting collisions sitting in a sea of "pileup" collisions

ATLAS Track Reconstruction for the HL-LHC

- Once upgraded, ATLAS will read out ~300,000 measurements for each event
 - Need to identify and reconstruct the trajectories of ~4000 charged particles from this data
- The High-Level Trigger needs to do this at an event rate of 1 MHz to select events of interest, writing them out at 10 kHz
 - Use an online farm, expanded from the current 60,000 CPUs
 - Maybe accelerated with GPUs or FPGAs
- Full/detailed reconstruction performed on the events selected by the Trigger
 - Even with the World-wide LHC Computing Grid, this will be challenging

Improved track reconstruction for Run 4

- We need aggressive R&D to handle the data volume from the new ITk detector
- The ATLAS track reconstruction software is being rewritten
 - based on the Open Source ACTS project [1]
 - improved algorithms
 - modern software engineering practices
 - explicitly designed for multi-threaded and GPU applications
 - takes advantage of cross-experiment Machine Learning developments

The RHUL Group

- Group of 12 academics, 5 engineers/technical support staff, 14 postdoctoral researches and 23 postgraduate students
- Active in many of the world-leading particle physics activities:
 - ATLAS on the LHC 5 academics
 - (Exotics, Higgs, Statistics, Top)
 - Particle Astrophysics 3 academics
 - (DM, neutrino and gravitational waves)
 - Accelerator Science 3 academics
 - (John Adams Institute, beams diagnostics for LHC upgrades and future accelerators)
 - Theory 2 academics
 - (LHC phenomenology, Dark Matter)
- On ATLAS: Exotics, Higgs, Statistics, Top. Involved in the electronics of the data acquisition system trigger (experiment, upgrade and physics), computing

Why perform (Exotics) Dilepton Searches?

• History of discovery: confirming Standard Model (SM)

• The SM is extremely successful, but it leaves many questions unanswered.

????

- Hierarchy problem (EW << Planck Scale)
- Gravity is not included
- Are quarks and leptons fundamental particles (contact interactions)?
- Why is only 5 % of matter made of ordinary SM particles? – What is dark matter?
- All can be investigated in the dilepton channels!
 - Resonant bumps
 - Non-resonant excesses
 - Or wiggles!

What is a Trigger Level Analysis (TLA)?

- To search at low invariant mass:
 - Lots of SM backgrounds
 - Can't keep all data on tape
 - Have limited dataset size can store
- TLA:
 - Rather than writing out full data for a few events
 - Keep less data for more events

- Run 2 ATLAS dijet TLA search
- No Run 1 or 2 dilepton TLA ** NEW for Run 3!

What can you search for using a TLA?

- Enables search for low mass resonances
 - e.g. dark photons!

Ordinary Photons: A with coupling e Dark Photons: A' with coupling e'

Parameters: mixing ϵ mass $m_{a'}$ of dark photon

https://arxiv.org/pdf/2005.01515.pdf

137 ${\rm fb}^{-1}$ (standard triggers) and 96.6 ${\rm fb}^{-1}$ (scouting triggers) (13 TeV)

https://arxiv.org/abs/1912.04776

Exotics physics at RHUL

- Nice group of people:
- Exotics (1 academic + 1 post-doc + 1 PhD student + 1 PhD (2022 start))
- Statistics (1 academic + 2 PhD students)

- Precise PhD analysis project flexible at this point
 - also allows to see how LHC schedule develops

16

Studentship outline

- Start at RHUL (~6 months)
 - Academic lecture and computing courses
 - Start work on HLT/tracking software gain familiarity with project
- Some time at RAL, then 12 months at CERN
 - Hands-on experience commissioning/operating HLT system during Run 3
 - control room shifts, expert on-call support
 - Join physics analysis group, foundation for physics analysis component of thesis
- Return to RAL/RHUL
 - Finish physics analysis, write thesis

Thanks for listening! Any Questions?

Look forward to more data to come in 2022 with Run 3...

ATLAS Trigger

- If we stored all the data that ATLAS generates from collisions, we would use every hard drive in the world within weeks
- Store only the interesting collisions (1500/s)
 - Still record the equivalent of full Netflix catalogue every year
- Use dedicated hardware (Level 1 Trigger) and 60,000 CPUs (High Level Trigger)

Level 1

Hardware trigger

information

Coarse granularity detector

40 MHz

80 kHz

ATLAS High Level Trigger

• During LS2 rewrote entire trigger code (nearly 1M lines of C++ and Python) to enable multi-threading and improve the selection algorithms

- RAL interests:
 - Tracking using machine learning techniques to find tracks quickly and efficiently
 - Core trigger software flow of events/algorithms, control room tools, analysis tools, etc.
 - Validation of trigger software are we finding the events we want efficiently? Resource usage memory and CPU time?
 - Beyond CPUs: GPUs and FPGAs for Run 4

Testing the SM of Particle Physics & beyond!

In $ee/\mu\mu$ data can look for:

RHUL Leadership and Long-term Involvement in High Mass Dilepton Searches

- Run 1 & Run 2 ee/ $\mu\mu$ data has been used to search for
- Resonant new physics
- Spin 1 Z'
- Spin 2 RS Gravitons

- Non-resonant new physics
- Contact Interactions
- ADD (large extra dimensions)

ROYAL

Resonant Dilepton Searches

Resonant new physics

24

Non-resonant searches

• Non-resonant new physics

RHUL Publications and Editor (**): Run 2

- Resonant new physics
- Dilepton Resonance Search 139 fb⁻¹

Phys. Lett. B 796 (2019) 68

- Both resonant and non-resonant new physics
- In the dilepton final state 36.1 fb⁻¹

<u>JHEP 10 (2017) 182</u>

Phys. Lett. B 761 (2016) 372-392

Non-resonant new physics

Non-resonant ADD dilepton search 139 fb⁻¹** Berry ATL-PHYS-PUB-2021-021

3.2 fb⁻¹

Non-resonant dilepton search 139 fb⁻¹

JHEP 11 (2020) 005

RHUL Publications and Paper Editor (**): Run 1

Resonant new physics

- arXiv:1103.6218, Phys.Lett.B700:163-180 (2011) Dilepton resonances at \sqrt{s} = 7 TeV (~40 pb⁻¹)
- Dilepton resonances at \sqrt{s} = 7 TeV (1 fb⁻¹)
- Dilepton resonances at \sqrt{s} = 7 TeV (4.9 pb⁻¹) arxiv: 1209.2535, JHEP 1211 (2012) 138

Non-resonant new physics

- Non-resonant CI & ADD dilepton search at $\sqrt{s} = 7 \text{ TeV} (\sim 1 \text{ fb}^{-1}) **$ arXiv:1112.4462, Phys.Lett. B712 (2012) 40-58. Berry
- Non-resonant CI & ADD dilepton search at $\sqrt{s} = 7 \text{ TeV} (\sim 5 \text{ fb}^{-1}) **$
- Non-resonant CI & ADD dilepton search at $\sqrt{s} = 8$ TeV (~11D⁻¹)

Berry arXiv:1407.2410v3 Eur. Phys. J. C (2014) 74:3134

arxiv:1108.1582, Phys.Rev.Lett. 107 (2011) 272002

Berrv

Diphoton non-resonant new physics

2

- Extra Dimensions using diphoton events in 7 TeV (~1fb⁻¹ ee + ~ 2fb⁻¹ γγ) arXiv:1112.2194 Phys.Lett. B710 (2012) 538-556. Extra Dimensions using diphoton events in 7 TeV (~5fb⁻¹)

