

ATLAS studentship at RAL

Particular emphasis on preparation of upgraded ATLAS Calorimeter Trigger for LHC Run 3

LHC timeline

LHC first started serious data taking in 2011

Run 1, ran at up to 75% nominal luminosity, culminated in discovery of Higgs boson

LHC Run 2 has just finished

Reached 2 times nominal luminosity, delivered over 5 times data of Run 1

Now in Long Shutdown 2 for upgrade for Run 3

Machine consolidation, Phase-I upgrades to ATLAS

Further Long Shutdown 3 starting in 2024 for upgrade to HL-LHC

Phase-II upgrades to ATLAS for 5 to 7 times nominal luminosity

ATLAS studentship at RAL

Page 2 of 11

ATLAS Experiment

ATLAS one of two general purpose detectors at the Large Hadron Collider

25 m high, 44 m in length, consisting of different subsystems wrapped concentrically in layers around collision point to record trajectory, momentum and energy of particles

ATLAS Collaboration ~5000 scientists and engineers, 182 institutions, 38 countries

In UK 14 universities and Rutherford Appleton Laboratory (RAL group 22 people)

ATLAS studentship at RAL

Page 3 of 11

RAL ATLAS group

Group Leader

Stephen Haywood

Tracker

Steve McMahon

• Jens Dopke, Bruce Gallop, John Matheson, Peter Phillips, Craig Sawyer, Ben Smart, Weimin Song (RIF), Giulio Villani, Monika Wielers, Gary Zhang

L1Calo

Robin Middleton

Bruce Barnett, Norman Gee,
Dave Sankey, Weiming Qian (TD)

HLT

John Baines

• Dmitry Emeliyanov, Julie Kirk, Stewart Martin-Haugh

Physics & Computing

Monika Wielers

• Tim Adye (Tier 1), Bill Murray

RAL involvement in ATLAS

RAL group had responsibility for original construction

Level-1 Calorimeter Trigger

High Level Trigger

Semi-Conductor Tracker (SCT)

Since then operating the detector and contributing to the physics analysis

Including B physics, Higgs measurements and searches for heavy bosons

Now preparing for upgrades

Phase-I upgrades for installation this Long Shutdown

· Level-1 Calorimeter Trigger and High Level Trigger

Phase-II upgrades for installation in next Long Shutdown starting in 2024

· Level-0 Global Trigger, Event Filter and new Inner Tracker (ITk)

ATLAS studentship at RAL

Page 5 of 11

ITk

Original Inner Detector reaches its end of life in 2024

Will be replaced with new all silicon detector

RAL involved in barrel strips and endcap pixels

Strip R&D, including testing ASICs, leading into module production

mounting modules onto staves

Pixel R&D wafer probing, development of HV multiplexing, DAQ and control systems

 production mounting onto half-rings in construction of endcap

Triggering at the LHC

LHC collides bunched beams of protons 40 million times per second

Every time the bunches cross multiple protons collide

Real example from 2016 with 10 collisions

• at end of Run 2 LHC delivering ~1 billion proton-proton collisions per second

In Run 4 expect an average of 200 collisions each time bunches cross

This a simulated example with 200 collisions

• up to 10 billion collisions per second

Interesting collisions at much much lower rate

 1 Higgs boson per 10 billion collisions, some analyses a handful of collisions per year

We want just the interesting collisions

Sitting in a sea of 'pileup' collisions

Triggering in ATLAS

The trigger system decides instantaneously which of these collisions are interesting

As a multi-stage decision to select which are kept

Baseline trigger system for ATLAS in Run 4

Level-0

- custom hardware using subset of information from detector
- · 40 million decisions per second
- up to 6 μ s for each decision (10 μ s buffer for detector)

Event Filter

- based on heterogeneous computer farm
- · 1 million decisions per second

10 thousand events per second output to storage for physics analysis

Original and Run 3 systems conceptually similar

Level-1 40 million decisions per second, up to 2 μ s for decision, 2.5 μ s buffer on detector HLT CPU farm 100 thousand decisions, 1 thousand events to storage per second

Level-1 Calorimeter Trigger upgrade for Run 3

Need to improve sensitivity to electroweak physics in face of increased pileup

Maintain thresholds close to original system by increasing data into trigger by factor 10

· LAr SuperCells with finer azimuthal and depth segmentation

Lateral R_{η} and depth f_3 shower shape discriminants between electrons and jets in eFEX

Trigger modules for Run 3

Factor 10 increase in data rate to 30 Tb/s requires very many high-speed optical links

· fibre-optic switchyard to map ~3000 fibres from calorimeter to trigger processors

eFEX, jFEX and gFEX boards with up to 240 inputs each running at 11.2 Gb/s

• up to 120 high-speed serial transceivers per FPGA, high density mid-board optics

Studentship project

Start at Birmingham

Academic and computing courses

Year to 18 months at CERN

Hands-on experimental experience commissioning eFEX system at start of Run 3

· including control room shifts and providing first-line expert support

Join physics analysis group, foundation for physics analysis component of thesis

Return to RAL

Work on eFEX calibration and performance during Run 3

Space in USA15 cavern already being prepared, test lab on surface already in use

ATLAS studentship at RAL

David Sankey, 4 March 2019