FFA activity in Japan and future projects

2022.9.30 y.ishi KURNS

Slack archive of FFA21

https://www.rri.kyoto-u.ac.jp/beam_physics_lab/ffa21/slack/ ffa21workshop.slack.com_log.general_2022_08_30_10_48_ 52.html

- 1. overview of the complex at KURNS
- 2. activity and plans
 - Kyushu university
 - KURNS FFA Main Ring remodeling
 - pion production ring
 - ERIT_SHE (ERIT for super heavy element)
- 3. summary

Layout of the accelerator complex at KURNS

H-ION source

MAIN RING

Beam species Injection energy Extraction energy Beam current Lattice structure Field index k Average orbit radii : 4.52 – 5.12 m

- : proton
- : 11 MeV
- : 150 (100) MeV
- : 1 nA (safety reg.)
- : 12-cell DFD
- : 7.5

Betatron functions

Beam injection

Charge stripping foil

Machine time schedule

	2020	2021	2022	2023
Nuclear data-taking (JAEA)				
Beam stacking study (UK Collaboration)				
Medical study (Hokkaido Univ.)				

Future plans for the Irradiation Hall

ERIT has gone

Activity at Kyushu University

 \mathbf{J}

The 2022 Workshop on Fixed Field Alternating Gradient Accelerators

Y. Yonemura

PiPER

PiPER (Pion Production Erit Ring)

Concept and constraints

- 1. Dedicated to pion production
- 2. Use ERIT scheme i.e. no acceleration
- 3. Inject 330 MeV proton from AFV cyclotron at RIKEN
- 4. Fit to the existing building at RIKEN $R_{\text{footprint}} < 5 \text{ m}$
- 5. No reverse bending
 - 1. Use only F magnets
 - 2. Low k for the horizontal focusing
 - 3. Edge angle for the vertical focusing
- 6. Aiming design at small tune variations and small COD

Parameters of the PiPER

beam species

energy

radius of central orbit

tune

 β @ center of F

minimum gap

B field @ central orbit

Ibeam from injector

target thickness

survival

injected beam size

production rate

proton				
330 MeV full-energy injection				
4.07 m				
(1.21, 0.73)				
(3.5 m, 5.5 m)				
142 mm				
1.48 T				
1 pA				
100 µm				
100 turn				
5 mm				
200 π ⁻ /s (1000 π ⁺ /s)				

図 3.20 ミュオン生成リングのチューン(330 MeV ± 10 MeV)

(a) 水平方向

(b) 垂直方向

図 3.21 ミュオン生成リングのビームアクセプタンス

ERIT_SHE

Nuclear chart

ERIT_SHE

Beam species, target for SHE

test run ${}^{48}_{20}Ca + {}^{238}_{92}U \rightarrow {}^{286}_{112}Cn$

${}^{54}_{24}\text{Cr} + {}^{243}_{95}\text{Am} \rightarrow {}_{119}\text{Xx}$

 ${}^{55}_{25}\text{Mn} + {}^{243}_{95}\text{Am} \rightarrow {}_{120}\text{Xx}$

ERIT SHE scheme

Injection current : 1 pµA (6.25E12 pps) assumption : 1000 turn survival target thickness 200µg/cm2 detection efficiency 10%

Can detect 1 SHE in every 38 days

Continuous injection continuous production continuous extraction

Emittance growth

- Beam
 - 48Ca+18 ion, E=7.9MeV/u
- Target
 - 238U92, thickness= $200\mu g/cm^2$
- ERIT Ring parameter
 - Beta function(transverse) ; 1m
- ERIT works as "beam emittance cooling ring" with ionization cooling.

Transverse Emittance

Y. MORI

Transverse Beam Size

Longitudinal Energy Spread

Bucket height and RF voltage

$$E_{1/2} = \left[\frac{qeV}{h}\right]^{1/2} Y\beta \left[\frac{E}{\pi|\eta|}\right]^{1/2}$$

cf.
$${}^{40}Ca^{+18}, KE = 7.9 MeV/u, E = 40 \times (938 + 7.9) MeV$$

 $\eta = 0.5(k = 1), Y = 1.4$

 $If, V = 400kV, h = 16 \rightarrow E_{1/2} = 30.6MeV$

- Transverse emittance tends to constant value after 2000 turns due to the ionization beam cooling. $\rightarrow \epsilon_{N=}115$ mm.mrad
- As the beam cooling does not affect in longitudinal direction, energy spread increases. After 1000 turns $\rightarrow <\sigma_E > \sim 50^* q \text{ keV}$
- Using wedge target, transverse-longitudinal coupling suppress the energy spread increase. $\eta=0.9 \rightarrow \epsilon_N \sim 350[\text{mm.mrad}], <\sigma_E > \sim 20^* \text{qkeV}$
 - Capable in terms of the ring acceptance.
- Cavity voltage
 - Assuming the target thickness is $200\mu g/cm^{2}$, Energy loss ~ 36 MeV/turn (h=16).
 - cf. R.T. rf cavity (~10MHz) Vrf ~400kV (in ERIT case)

Summary of ERIT simulation

⁴⁸Ca + ²³⁸U = ²⁸⁶₁₁₂Cn

Ca-48BeamA_meam (u)= 48.0 Z_beam= 20.0 E_beam (MeV)= 275.0 Av. Charge= 18.6	
Q(+) Br(Tm) Er(MV) :	
15.0 1.1045 36.6667 16.0 1.0354 34.3750 17.0 0.9745 32.3529 ***********************************	
19.0 0.8/19 28.94/4 *****************	
20.0 0.8283 27.5000 ******	
21.0 0.7889 26.1905	
22.0 0.7530 25.0000	
Acomp (u) = 286.00000 Erec (MeV) = 40.30000 Vcomp (cm/ns) = 0.52141 Aset (u) = 283.00000 Zset = 112.00000	
Q(+) Br(Tm) Er(MV)	
Energy (MeV) = 39. 877	
Average Charge = 21.00 , Standard Deviati	on= 2.33
15.0 0.8551 5.3170 16.0 0.8016 4.9847 * 17.0 0.7545 4.6914 ***** 18.0 0.7126 4.4308 ************ 19.0 0.6751 4.1976 **************** 20.0 0.6413 3.9877 ************************************	Main Ring
21.0 0.6108 3.7978 ***********************************	
22.0 0.5830 3.6252 ************************************	Main Ring から外れる
Sum of the Yield below Br=0.6500>	0. 73938

injection orbit

magnet clorb.xy" using 1:2"

closed orbit of different charge state

Scaling FFA

• cf. k=1
$$\frac{r}{r_0} = \left(\frac{q_0}{q}\right)^{1/k}$$

- q₀=+18, q=+19
- \rightarrow r/r₀=0.95 r₀=4m \rightarrow 3.8m

magnet - $\frac{48}{48}$ Ca¹⁷⁺ - $\frac{48}{48}$ Ca¹⁸⁺ - $\frac{48}{19+}$ - $\frac{48}{48}$ Ca²⁰⁺ - $\frac{48}{20+}$ - $\frac{48}{20+}$

extraction orbit of different charge state

magnet	
сц ¹⁷⁺	
сц ¹⁸⁺	
оц ¹⁹⁺	
SП SU ²⁰⁺	
оп сц21+	
5п сµ22+	
SП Си ²³⁺	
5H CU ²⁴⁺	
480- ¹⁸⁺	
Ca	

long drift

long drift

	w/o long drift		w/ long drift		ift	
z/A	18/48	19/48	20/48	18/48	19/48	20/48
ν_x	1.561	1.561	1.561	1.731	1.736	1.749
$\Delta \nu_x$	0	0	0	-0.005	0	0.013
ν_y	3.421	3.421	3.421	3.842	3.865	3.890
$\Delta \nu_v$	0	0	0	-0.023	0	0.025
$R_0(m)$	5.035	4.900	4.776	5.035	4.900	4.776
<i>C</i> (<i>m</i>)	32.985	32.099	31.287	38.253	38.099	37.287
$\Delta C/C$	2.76%	0	-2.53%	2.33%	0	-2.13%

schedule

	2025	2026	2027	20
3	produ	uction		
			installation	
			comr	nissio
	31			

oning

- 1. It has been 12 years since the main ring started operation. 2. Proton beams from the main ring will be available until March 2023. 3. The utilization plan of the entire facility and the future reuse of the FFAs
- are under consideration.
- 4. One of the option of remodeling the main ring for pion production i.e. PiPER ring has been designed.
- 5. The other option for producing the super heavy element is under consideration.

