Beam dynamics study of the vFFA electron model at Kyushu University

Kyosuke Adachi Kyushu University

FFA' 22 September 30, 2022

- Outline
 - > Introduction
 - Purpose
 - Injection Simulation
 - > Measurement

- Outline
 - > Introduction
 - Purpose
 - Injection Simulation
 - > Measurement

Demands for high intensity and high energy hadron accelerators are strongly increasing in various fields recently.

Harmonytron^{*1}

Fixed magnetic field

➤ Rapid cycle

Fixed rf frequency

➤ Continuous beam acceleration

Focusing system

Strong focusing

Large turn separation

➤High efficiency for beam extraction

Our group is aiming to realize the Harmonytron that can efficiently accelerate high intensity hadron and muon.

*1 Y. Mori, Y. Yonemura and H. Arima : "A Proposal of Harmonictron", Mem. Fac. Eng. Kyushu Univ., Vol. 77, No. 2, pp. 1-13 (2017).

Harmonytron

> Acceleration method

Harmonic Number Jump

Focusing system

Vertical FFA accelerator

A research of the vFFA has been carried out at various institutes.

At Kyushu university...

A design study and construction of the vFFA electron model aiming beam acceleration has been carried out.

vFFA electron model

Focusing system	F-D Singlet
Number of cell	16
Magnet	Sector
Injection energy	20 [keV]
Maximum energy	40 [keV]
Radius	1.0 [m]

Development and **Proof-of-Principle Experiment** of the vFFA electron model is goal in our study.

Magnet of vFFA electron model

Focusing system	F-D Singlet
Magnet	Sector

Advantage

- Edge angle is 0.
- Vertical kick is negligible.
 - $\rightarrow B_{\chi}$ and B_{z} of fringing field = 0
- 3. Design orbit would be closed.

Magnet of vFFA electron model

- Outline
 - Introduction
 - > Purpose
 - Injection Simulation
 - > Measurement
 - Summary

Purpose

Beam injection using electron gun and acceleration

Simulation

- Calculation of beam emittance from electron gun with CST. *2
- \succ Acceleration of the beam from electron gun.

Measurement

Measurement of the performance of electron gun.

*2 CST Studio Suite, http://www.cst.com

- Outline
 - Introduction
 - > Purpose
 - Injection Simulation
 - Measurement

Development of each component

- The beam vertically moves downwards with acceleration in the vFFA electron model.
 - \rightarrow The m-value means negative.

Injector (Electron gun)

- Filament material is tungsten or tantalum.
- Target emission current is 100µA.
- V_{acc} represents the acceleration voltage.
- *V_{sep}* represents the septum voltage.
- Consists of filament, ground and septum electrodes

Туре	Thermionic
	electron emission
Filament	W or Ta
	$(\Phi 0.3 \text{ wire})$
Current	100 µA
Temperature	~2000 K
Energy	20keV

Schematic of electron gun and beam orbit

Injection beam emittance

• The emittance of the injection beam obtained using CST is shown below.

- Characteristics
- Large horizontal spread and small vertical spread beam
- The beam has a width of 4mm for y-direction.

Comparison

• The injection beam emittance was compared with the acceptance of electrons that can reach up to 40 keV.

- Horizontal
 - -Region of large angles is outside the blue region
 - Significantly affects injection efficiency
- Vertical
 - Exists within the blue region

Acceleration

Injection conditions

Energy	20 keV
V _{acc}	-19.0 kV
V _{sep}	6.3 kV
position	On the closed orbit

RF cavity conditions

V_g	200 V/cavity
$\Phi_{_S}$	30 deg.
accelerate	20→40 keV

- F magnet
 - The average energy is set to be 20 keV.
 - The injection position is the same as the 20 keV closed orbit position.
 - Prepresents a direction of injection beam.

Result of acceleration

- Plot of injection emittance overlaid on blue region.
- Green marker shows particles that reached to 40keV.
- These particles exist within only the blue marker area.

- The survival rate is calculated with the number of particles at the time of injection at 100%.
- Survivability decreases at 20-22keV and 38-40keV.
 - \rightarrow Large decrease at 20-22keV
- The cause is considered to be the large radial direction spread and size of dynamic aperture.

Beam matching

 Generates an electric field with the effect of a lens 「 ⇒ 」 in the path of the beam inside the electron gun.

• Calculated as V = -400V.

- The radial angular spread is suppressed.
- In survival rate, overall improvement was observed (22.3 \rightarrow 31.9%).
- Further improvement is future tasks.
 - \rightarrow Injection conditions, Dynamic aperture, ...

18

- Outline
 - Introduction
 - Purpose
 - Injection Simulation
 - Measurement

Measurement

Performance evaluation experiments on the electron gun have been carried out.

Electron gun

SPELLMAN

- ① Measurement of emission current values
- 2 Beam profile
- ③ Emittance measurements

Vacuum chamber Septum

power supply

HV

power supply

FFA'22 Workshop Fri 30/9/2022

Measurement of emission current values

- Faraday Cup (FC) was installed at the electron gun exit and the current value at the exit was measured.
- Vacc=20kV, Vsep=7kV
 GND electrode
 FC
 Septum electrode
 Fc
 GND electrode

Setting the filament current value to around 6.4 A resulted in the target emission current value of 100 µA.

Beam profile

- Beam profile was measured in the y-direction (x-direction not measured)
- 15 points were measured at a pitch of 1.6mm using a wire of Φ 1.0.
- The lower part of the ground electrode is set to y=0.

Emittance measurements

- Measurements using the single-slit method are in progress.
- The slit width was set to 1mm for the test.

- 15 wires were arranged at a pitch of 0.5 mm.
- Distribution of 'y' was obtained.

Slit

GND

electrode

wire

• Plan to re-measure with narrower slit width

- Outline
 - Introduction
 - Purpose
 - Injection Simulation
 - > Measurement

Beam injection and acceleration

- ✓ Beams injected from the electron gun could be accelerated to 40 keV.
- ✓ The horizontal beam from the exit of the electron gun has a larger angular spread, causing a reduction in injection efficiency.
- ✓ By suppressing the radial spread of the incident beam, the injection efficiency can be improved.

Measurement

 ✓ Setting the filament current value to around 6.4 A resulted in the target emission current value of 100 µA.

Future plan of experiments

- ①Field measurement
 - •F magnet, D magnet and Straight section.
- 2Beam transport
 - 4-cell electromagnet arrangement.
 - Injection energy range is 20 to 40 keV.
 - Measurement of beam position and Courant-Snyder parameters.

