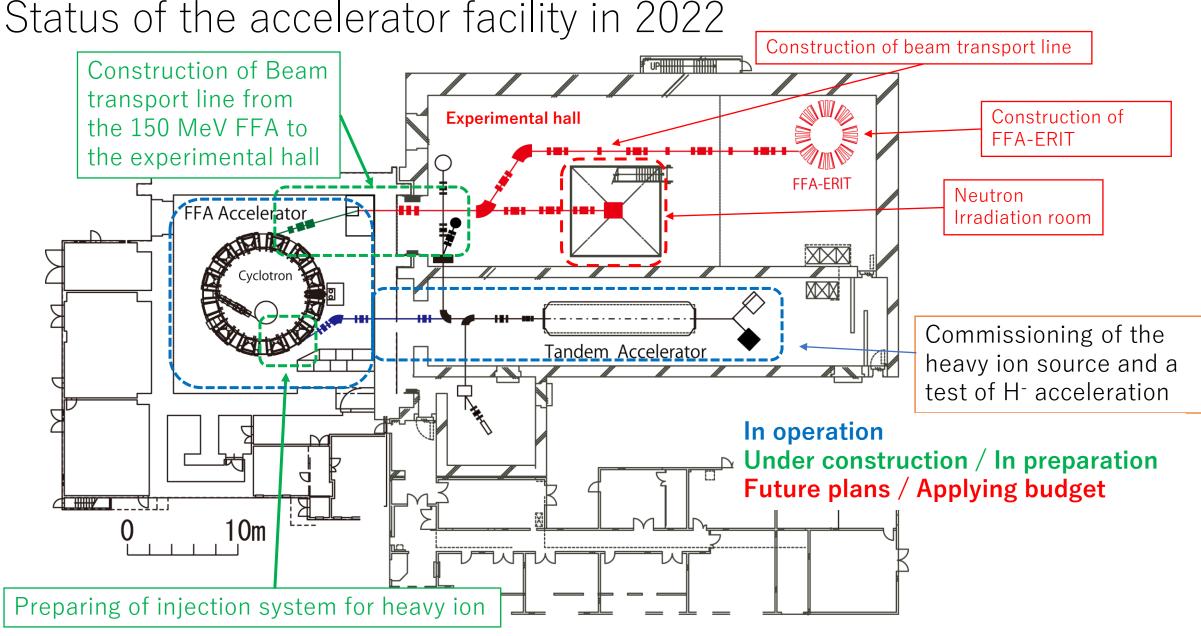
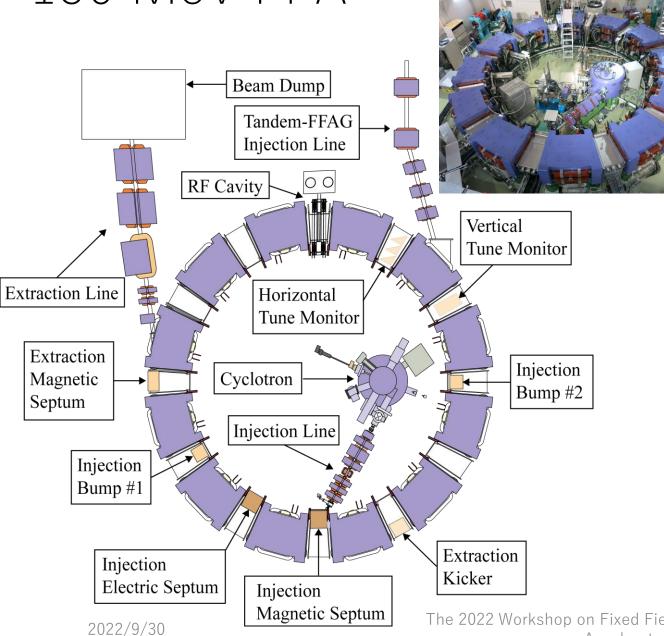

Status of FFA accelerator in Kyushu University


Faculty of Engineering, Kyushu University Yujiro Yonemura

Contents


- Overview of the accelerator facility of Kyushu University
- Status of projects in Kyushu University
 - Construction status of the beam transport line and the experimental hall
 - Heavy ion injection from the tandem accelerator to the FFA
 - Study on Harmonytron and production of neutron and unstable nuclei with FFA-ERIT ring
- Summary

Overview of the accelerator facility of Kyushu University

150 MeV FFA

Design parameters of 150 MeV FFA

Magnet Type	Radial Sector (DFD Triplet)	
Number of Cell	12	
Proton Energy	10 – 125 MeV (12 – 150 MeV)	
Average radius	4.47 – 5.20 m	
Repetition	100 Hz (2 Cavity)	
Beam Current	1.5 nA	
Betatron Tune (Injection Energy)	3.61 (Horizontal) 1.46 (Vertical)	

Design parameters of injector cyclotron

Туре	AVF Cyclotron	
Extraction Energy	10 MeV (Proton)	
RF Frequency	47 MHz (2 nd Harmonics)	
Beam extraction radius	0.3 m	
Beam Current	2 μΑ	

The 2022 Workshop on Fixed Field Alternating Gradient Accelerators

5

Tandem accelerator

Accelerator Type	Horizontal Tandem Van de Graaff	
Model	NEC Pelletron (8UDH)	
Terminal Voltage	7 MV (max. 8 MV)	
Accelerator Tank	Diameter 3.0 m Length 13.6 m	
Insulation Gas	SF ₆ (pressure 0.6 MPa)	
Ion Source	Sputter Ion Source (NEC MC- SNICS) RF Ion Source (NEC Alphatross)	
Injection Voltage	-70 kV	
Beam	p, d, H.I.	
Current	1 nA	
Terminal Stripper	C Foil and Ar Gass	
Charging Device	Double Pellet Chains (Current 150 μ A × 2)	

8 MeV tandem accelerator

(NEC Alphatross)

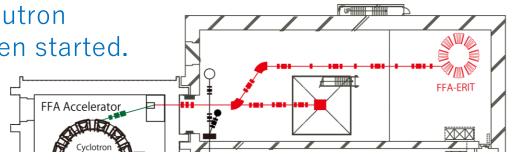
Ongoing and planned projects of FFA in Kyushu University

Three projects are ongoing, one project is planned.

Ongoing projects

- 1. Construction of the experimental hall to utilize beam of the 150 MeV FFA
- 2. Injection and acceleration of heavy ion with the 150 MeV FFA
- 3. <u>Development of a prototype machine of vertical FFA for Harmonytron</u>

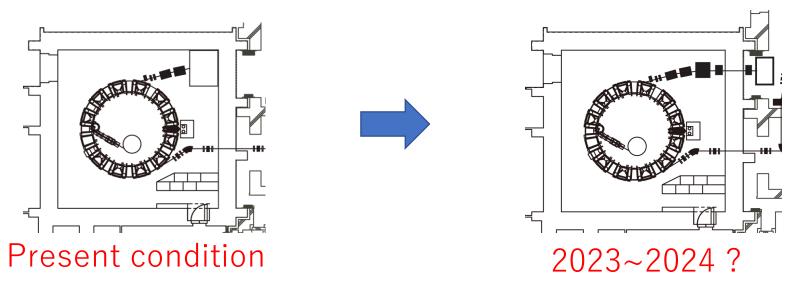
Planned project

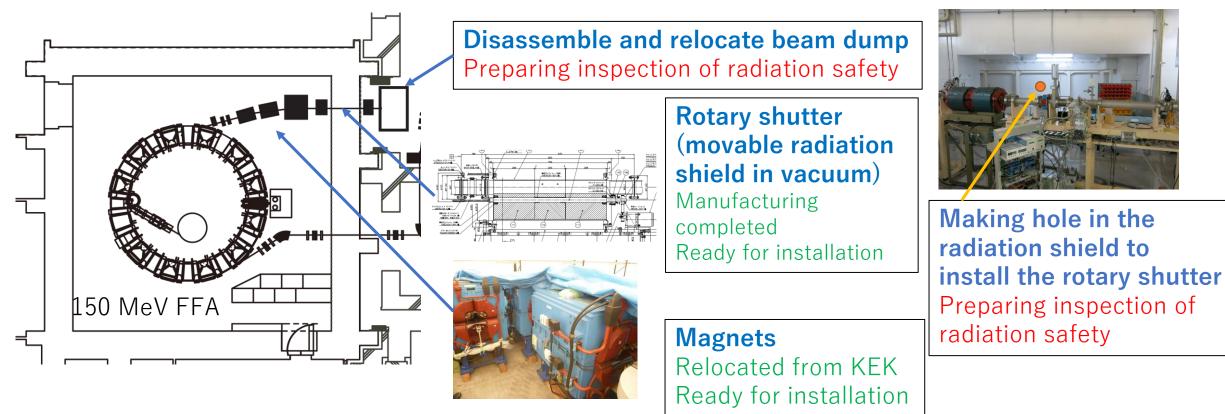

4. Production of neutron and unstable nuclei with FFA-ERIT ring

Details will be reported later in my presentation.

1. Construction of experimental hall to utilize beam of the 150 MeV FFA

To promote study of nuclear physics, material and neutron science, construction of the experimental hall has been started.


1-1. construction of beam transport line

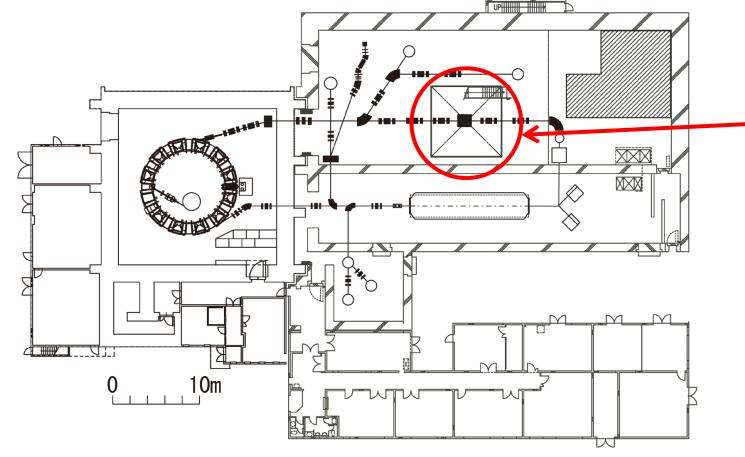

Part of the construction budget was approved in 2022.

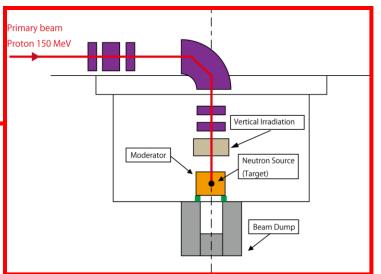
The 3rd stage of the construction facility has been started.

The beam transport line from the FFA to the experimental hall is under construction.

1-1. Status of construction of beam transport line

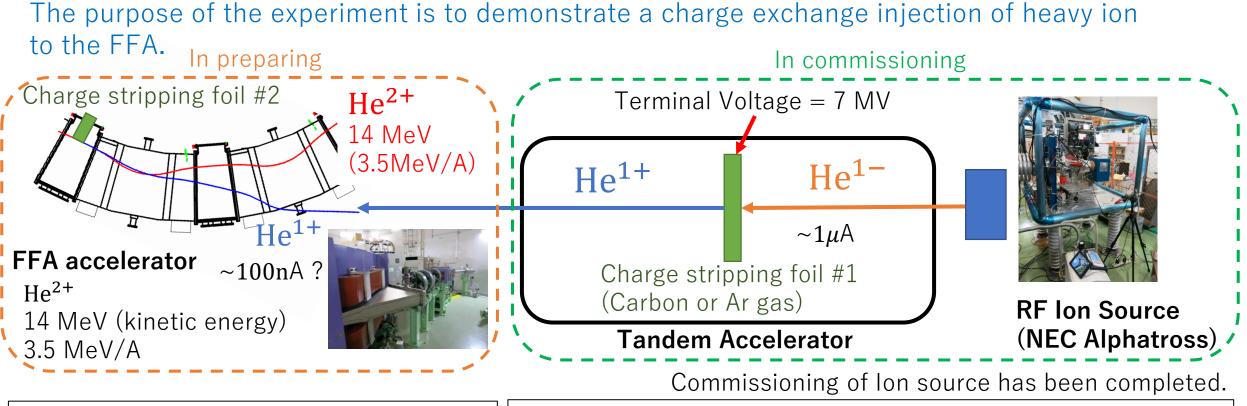



The construction of the beam transport line is expected to be delayed by more than a year due to delays in the review of the application for a radiation safety.


Because many applications have been submitted for the restart of nuclear power plants?

1-2. Construction of proton and neutron Irradiation room

To promote study of life science, material physics and neutron science, the construction of the vertical beam line and the proton and neutron irradiation room is planned in the future.

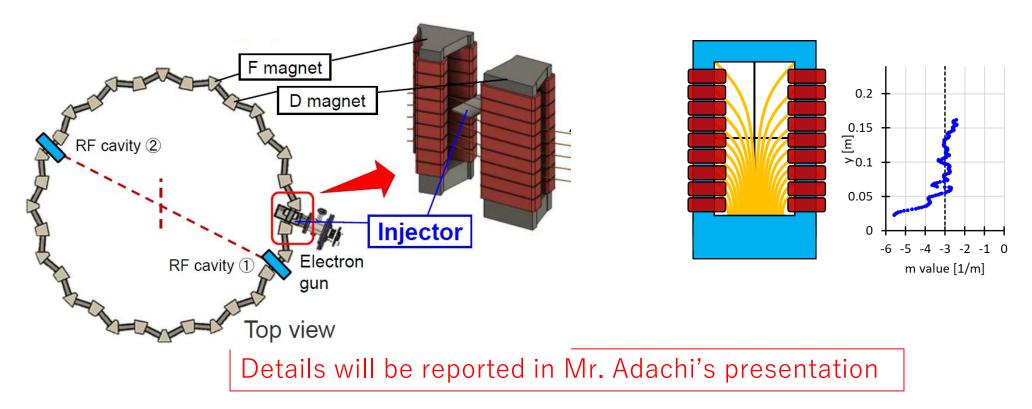


A budget for construction has been applied for.

2. Charge exchange injection of heavy ion to the 150 MeV FFA

2-1. Charge exchange injection system Preparing charge converting foil $(10 \ \mu g/cm^2 of Carbon foil is employed.)$

2-2. Test of the charge stripping foil

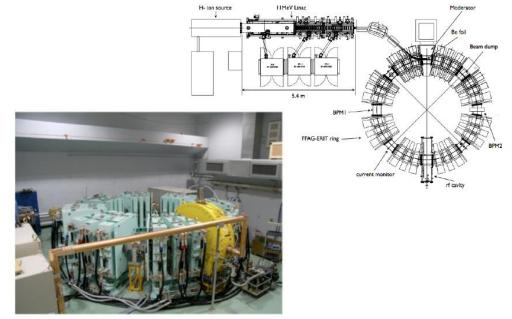

Beam experiment of charge conversion has been carried out. Test of the Carbon foil is in progress. The Argon gas stripper is being prepared.

He^{1+} ion beam will be injected to the FFA in 2023.

3. Development of a prototype machine of vertical FFA for Harmonytron^[1]

- Field optimization of magnets
- Simulation of beam injection and acceleration
- Commissioning of electron gun

have been carried out.


[1] Y. Mori, Y. Yonemura and H. Arima : "A Proposal of Harmonictron", Mem. Fac. Eng. Kyushu Univ., Vol. 77, No. 2, pp. 1-13 (2017).

4. Production of neutron and unstable nuclei with FFA-ERIT

FFA-ERIT is an accelerator-based neutron source with ERIT(Energy Recovery Internal Target^[2]) scheme developed in Kyoto University.

ERIT system	Expected turn number	~ 1000 turn	
	Be target thickness	~ 5 µs	
Injector Linac	lon spices	H-	
	Kinetic energy	11 MeV	
	Average beam current	~ 70 µA	
FFAG storage ring	Injection scheme	H ⁻ Injection	
RF cavity	RF voltage	200 kV	
	Harmonic number	6	

Design parameters of FFA-ERIT^[3]

The FFA-ERIT has been decommissioned and disassembled in 2021. Experiments on nuclear physics and neutron science with FFA-ERIT are planned in Kyushu University.

[2] Y. Mori, "Development of FFAG accelerators and their applications for intense secondary particle," Nuclear Instruments and Methods in Physics Research Section A, Volume 562, Issue 2, pp. 591-595, 2006.

[3] K. Okabe, et al., "DEVELOPMENT OF FFAGERIT SYSTEM FOR BNCT", Proc. Cyclotrons and Their Applications 2007, Eighteenth International Conference (2007). pp. 210-212.

The 2022 Workshop on Fixed Field Alternating Gradient

Accelerators

4. Production of neutron and unstable nuclei with FFA-ERIT ring

Low-energy and medium-energy neutron source

- Boron Neutron Capture Therapy (BNCT), Material Irradiation
- To obtain the cross sections of interaction of neutron in medium energy

Details of medium-energy neutron source with the remodeled ERIT ring will be reported in Mr. Takamatsu's presentation

Production of unstable nuclei with ERIT scheme

To find the island of stability in the region of super-heavy elements is one of the largest challenges in nuclear physics.

Interactions of neutron-rich nuclei and stable nuclei are employed for production unstable nuclei.

For example, ${}^{70}_{30}$ Zn + ${}^{209}_{83}$ Bi $\rightarrow {}^{278}_{113}$ Nh + 1n

 $\substack{^{64}_{30}\text{Zn}(48.6\%), \ ^{66}_{30}\text{Zn}(27.9\%), \ ^{67}_{30}\text{Zn}(4.1\%), \ ^{68}_{30}\text{Zn}(18.8\%), \ ^{70}_{30}\text{Zn}(0.6\%)}_{\substack{^{209}_{83}\text{Bi}(100\%)}}$

Neutron-rich Stable Unstable nucleus

However, the production efficiency of unstable nuclei is very low. The purpose of this study is to demonstrate a new method to produce unstable nuclei with ERIT scheme.

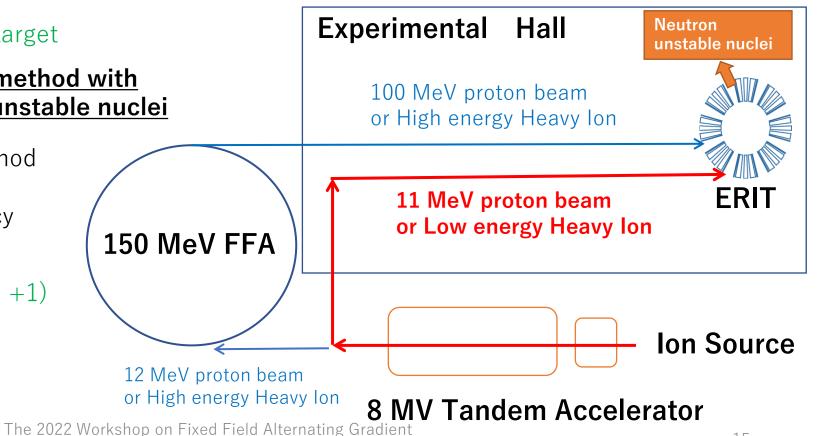
Final goal: ${}^{56\sim60}_{20}$ Ca +actinide target (Z~94) \rightarrow ${}_{114\sim120}$ New nucleus (stable?)

Construction plan of facility for production of neutron and unstable nuclei with FFA-ERIT

The application of the construction budget has already been submitted and it will be reviewed by the end of this year.

In the 1st stage (2023~?)

1. <u>Neutron production using 11 MeV of proton beam</u> from the tandem accelerator.

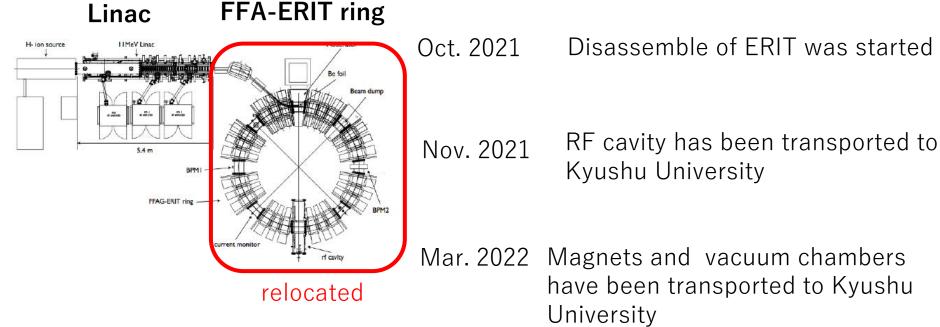

11 MeV proton beam + Be target

- 2. <u>Preliminary research for a new method with</u> <u>ERIT scheme for production of unstable nuclei</u>
 - To examine the separation method of produced nuclei
 - To measure production efficiency

Stable nuclei Beam:

 $5 \sim 6 \text{ MeV/A of }_{3}^{7}\text{Li} \text{ (charge state: +1)}$ $3 \leq Z(Atomic number) \leq 20$ **Stable nuclei Target:** Heavy nuclei target (Bi ?) In the 2nd stage (undecided)

Remodeled ERIT for medium-energy beam → Mr. Takamatsu's presentation



2022/9/30

Accelerators

Disassemble and relocation of FFA-ERIT ring

The budget for the relocation of FFA-ERIT ring was approved in last year. The relocation of the FFA-ERIT ring from Institute for Integrated Radiation and Nuclear Science of Kyoto University to Kyushu University has been carried out successfully.

Mar. 2022 Magnets and vacuum chambers have been transported to Kyushu

We appreciate all the support of Mori-sensei, Ishi-sensei and all staff of Kyoto University.

Summary

The present status of the accelerator facility in Kyushu University is reported.

- The constructions of the beam transport line from the FFA to the experimental hall are in progress.
- The test of the beam acceleration of He¹⁺ with the tandem accelerator has been started.
- The relocation of components of the FFA-ERIT ring has been completed.
- The development of a prototype machine of the vertical FFA is in progress.