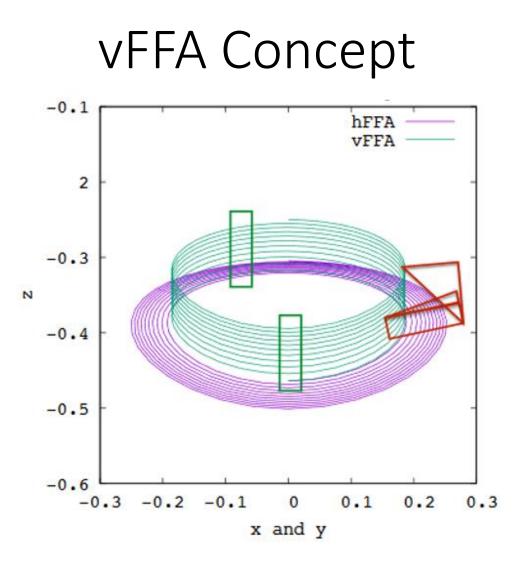
Progress towards modelling of the vFFA


Contents

- Intro to the vFFA
 - Hamiltonians
 - Closed orbits
- Optical components & Harmonic Analysis
 - Overview
 - Numerical study
- Next steps

Max Topp-Mugglestone

- Successive higher energy orbits are stacked vertically
- Constant tune achieved by condition $B(y) = B_0^{my}$
- Advantages
 - Strong focussing
 - Near-isochronous

But...
$$B_X = B_0 e^{mY} \sum \frac{n+1}{m} f_{n+1} X^n$$
$$B_Y = B_0 e^{mY} \sum f_n X^n$$
$$B_Z = B_0 e^{mY} \sum \frac{1}{m} \frac{df_n}{dZ} X^n$$

Magnetic fields from scaling law imply complicated optics

Max Topp-Mugglestone

3

Approaching the vFFA

• For hFFA, we have the following Hamiltonian:

$$h \sim \frac{p_x^2}{2} + \frac{p_y^2}{2} + \frac{x^2}{2} \frac{1-n}{\rho^2} + \frac{y^2}{2} \frac{n}{\rho^2}$$

• Is there an equivalent for the vFFA?

(Question asked by Thomas at the FFA school)

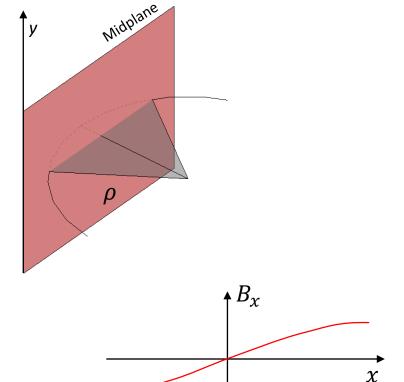
Max Topp-Mugglestone

The Fundamental vFFA Hamiltonian

$$h \sim \frac{{p_x}^2}{2} + \frac{{p_y}^2}{2} + \frac{x^2}{\rho} + xy\frac{m}{\rho}$$

Very simple and neat, but...

- Only applicable on the midplane
- Does not include fringe fields
- The closed orbit for a vFFA cannot exist on the midplane*
- Fringe fields dominate magnets in FETS-vFFA and ISIS-II designs



Max Topp-Mugglestone

A Word on vFFA closed orbits

- hFFA:
 - Plane of curvature coplanar with magnet midplane
- vFFA:
 - Plane of curvature perpendicular to magnet midplane
 - Orbit cannot be confined to magnet midplane*
 - Orbits are non-planar!

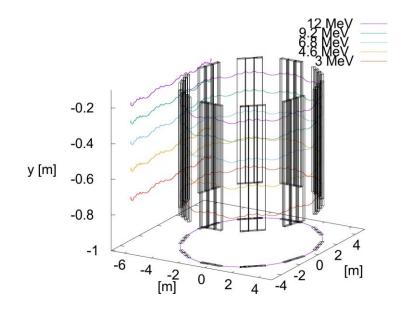
Our vFFA Hamiltonian needs to reflect these properties!

*This may not be the case for certain sector vFFAs...

Max Topp-Mugglestone

A practical vFFA Hamiltonian

$$h \sim \frac{p_x^2}{2} + \frac{p_y^2}{2} + xy\frac{m}{\rho_{3D}}\left(1 - \frac{m^2 x_0}{2}\right) + \frac{x^2}{\rho_{3D}}\left(\frac{\cos mx_0}{\rho_{3D}} + \frac{m^2 x_0}{2}\right) + \frac{y^2}{\rho_{3D}}\left(\frac{\sin mx_0}{\rho_{3D}} - \frac{m^2 x_0}{2} + \frac{m^4 x_0^3}{2\rho_{3D}}\right)$$


- We can use this Hamiltonian to analytically describe a vFFA if:
 - We can parametrize the cell geometry in 3d and determine:
 - x_0 horizontal offset from magnet midplane
 - ρ_{3D} Radius of curvature for a 3-dimensional bend
 - The magnets are long in comparison to the fringe
 - The radius of curvature is large
- However, FETS-vFFA and ISIS-II designs do not meet these criteria...
 - So why doesn't the model work? How must it be adapted?

Test Lattice parameters

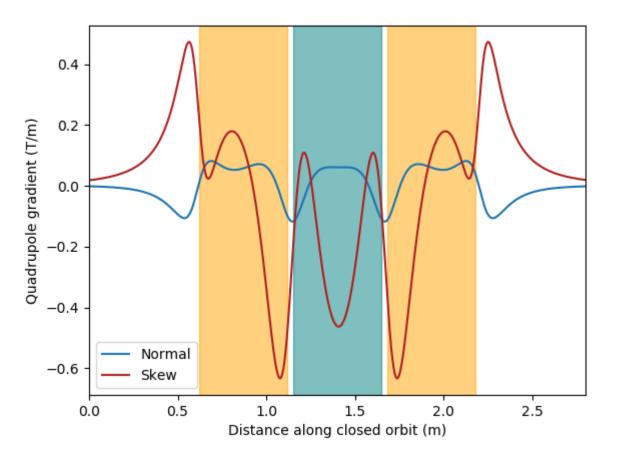
M-value	4.0/m
Magnet length	0.5m
FD ratio	2
F-D offset	0.02m
Cell length	2.8m

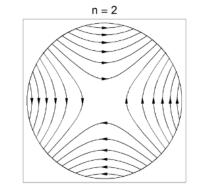
- FETS-like FDF Triplet
- Highly nonplanar closed orbit
- 'fringe-dominated' magnets
- Following results use a modified cell with zero bending angle

8

Max Topp-Mugglestone

Method of Harmonic Analysis

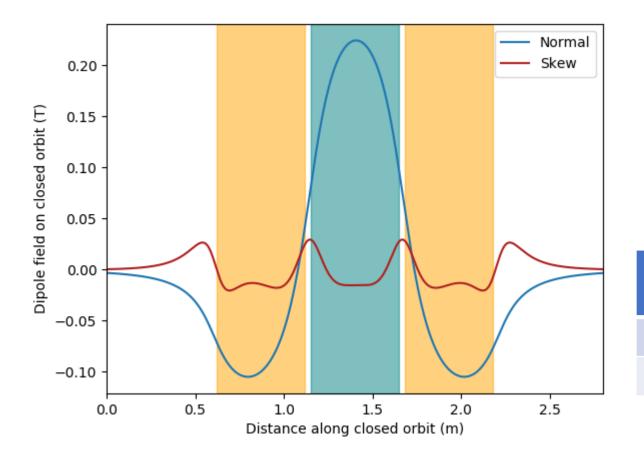

- Scan along closed orbit
- Draw a circle at each point on orbit in a plane perpendicular to the tangent vector
- Evaluate radial field component $(m{B}\cdot \hat{m{r}})$ on a number of points around the circle
- Take Fourier transform of radial field around the circle
- Obtain multipole coefficients for each integration step
- Reconstruct optics using multipole kicks (thin lens transfer matrices) corresponding to the measured coefficient

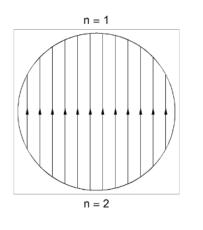


Max Topp-Mugglestone

Quadrupole components

 Field focusses in one transverse direction, defocusses in the other

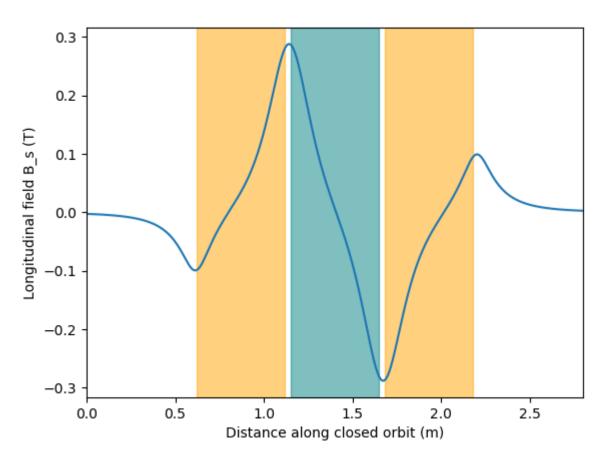

	Quadrupole-only tune	Full Numerical Tune (FIXFIELD)
qu	0.137	0.247
qv	0.124	0.182



Max Topp-Mugglestone

Dipole components

 Geometric focussing effect perpendicular to dipole field (aka weak focussing)

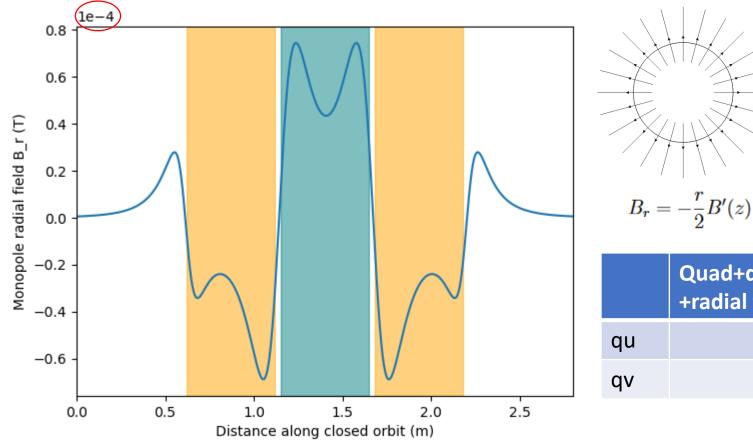

		Full Numerical Tune (FIXFIELD)
qu	0.229	0.247
qv	0.129	0.182

11

Longitudinal field components

- Fields collinear with orbit
 - Induce a rotation of the transverse optical planes around the closed orbit – 'Larmor rotation'

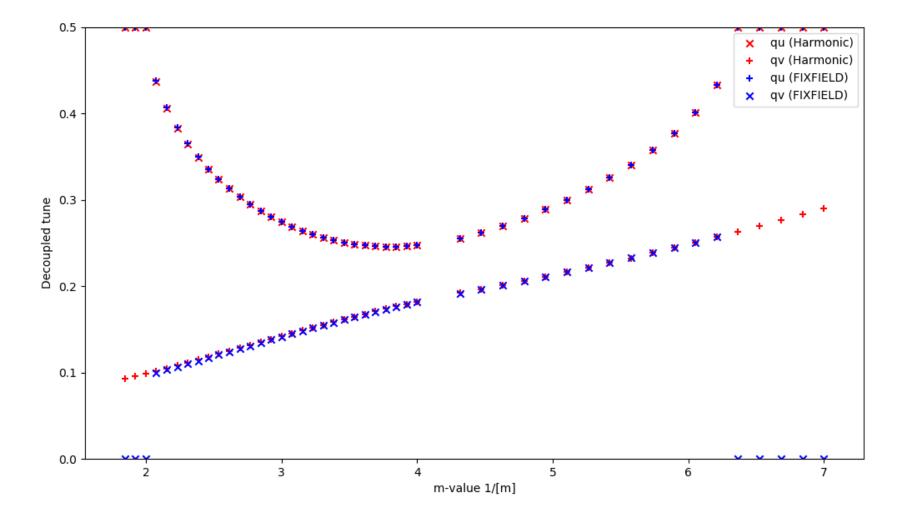
$$\theta = \int \frac{qB_z}{2P} \cdot dz$$


	Quad+dipole+longitudinal tune	Full Numerical Tune (FIXFIELD)
qu	0.211	0.247
qv	0.154	0.182

Max Topp-Mugglestone

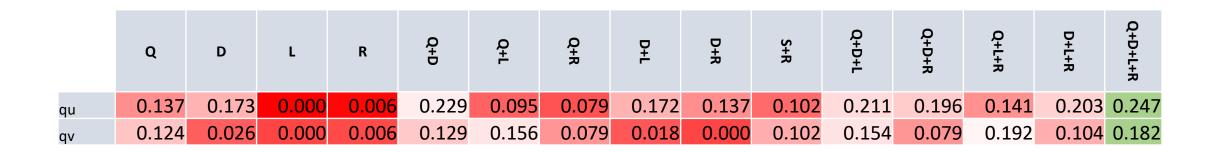
Radial field components

Imparts angular momentum to the beam


	Quad+dipole+longitudinal +radial tune	Full Numerical Tune (FIXFIELD)
qu	0.247	0.247
qv	0.182	0.182

Max Topp-Mugglestone

• To demonstrate robustness of method across parameter space:



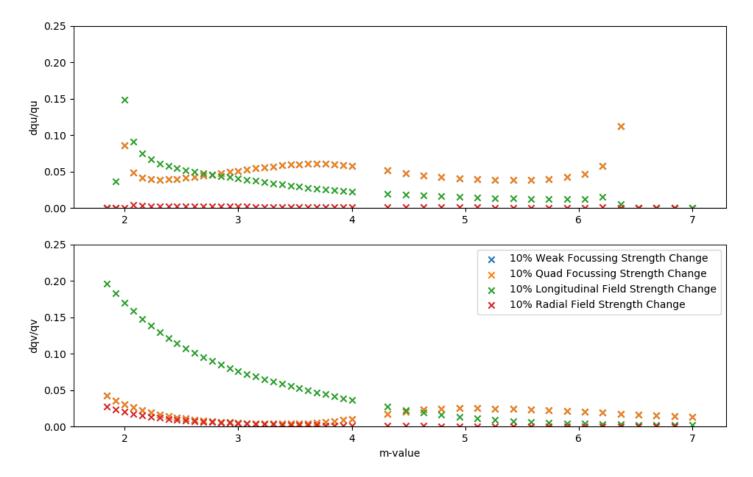
Max Topp-Mugglestone

14

- All field elements critical to reconstructing accurate tune in both planes
- Can we quantify the importance of each element?
- Can we explore how this changes across the parameter space?

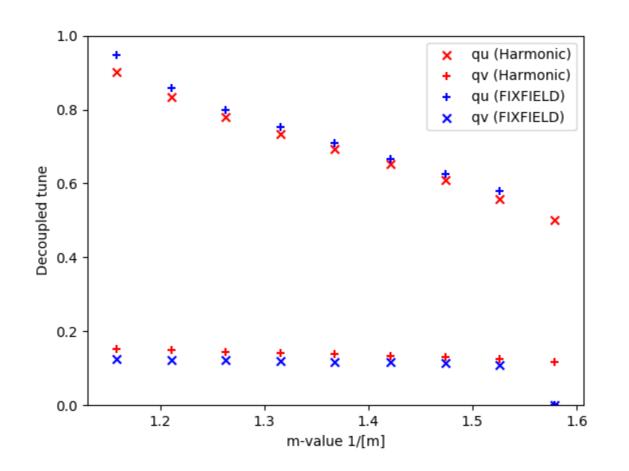
Multipole Element Significance Study

- Measure multipoles and construct optics as in Harmonic Analysis scheme outlined earlier
- Take optical model and adjust strength of individual multipole by given amount
 - E.g. rerun kick-drift integration with quadrupole strength tweaked by 10%
- Measure change in u and v tune and normalise $\left(\frac{\Delta q_i}{\alpha}\right)$
- Record data across the parameter space


Rough way of 'quantifying' importance of each field element

Multipole Element Significance Study

- Evolution of harmonic analysis for straight triplet vFFA across upper stability region
- FETS-vFFA operates in lower stability region

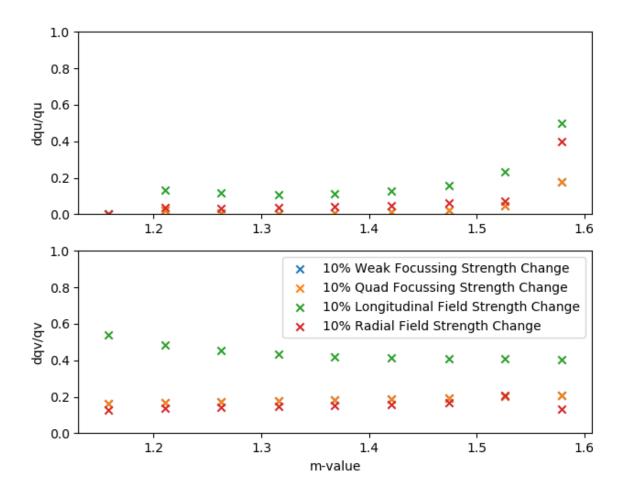


Max Topp-Mugglestone

17

Harmonic analysis of FETS baseline

- FETS baseline parameter scan
- Lower stability region


 Agreement isn't quite as good as the previous results

Max Topp-Mugglestone

Preliminary results from FETS baseline

- Dominated by longitudinal fields
- Radial fields have similar order of effect to quadrupole
- Dqu appears to decrease with increasing longitudinal field!
 - Interesting effect of Larmor angle?

Max Topp-Mugglestone

- Lattice dominated by longitudinal fields at low m
- This dq/q metric is limited:
 - Useful for comparing regions of parameter space
 - Could be used to classify regimes of behaviour for a machine
 - Doesn't give the full picture of how the optics behave

- Effect of dipole and quadrupole focussing well-understood
- Effect of longitudinal field can be expressed in terms of Larmor rotation
- How do we understand the influence of the radial field?
- Further exploration of vFFA parameter space needed
 - Can we define 'fringe-dominated' and 'magnet-dominated' regimes?
- Can we design a planar vFFA?
 - What is the influence of longitudinal and radial fields in this case?

Max Topp-Mugglestone

21

• Apply harmonic study generally in FFA machines (hFFA etc...)

- Further coupling study in vFFA
- Use results of vFFA study to inform further modelling from an analytic perspective
- Possible future study of harmonic elements on other properties of the accelerator
 - E.g. dynamic aperture

Max Topp-Mugglestone

22