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à Vertical orbit excursion

à Strongly non-linear magnetic fields
à Strongly coupled optics

With the fringe field function 𝑔(𝑥), the 
median plane field components are: 
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The Zgoubi ray-tracing code:
• Often used to study horizontal 

FFAs

• Particle tracking in complex field
maps

• Possibility to use its Python 
interface Zgoubidoo
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• Presentation of the lattice and methods
• Baseline lattice with arctan fringe field
• Fieldmap construction and tracking with Zgoubi
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Linear and non-linear beam dynamics of the ISIS-II FETS vertical FFA using Zgoubi

• Presentation of the lattice and methods
• Baseline lattice with arctan fringe field
• Fieldmap construction and tracking with Zgoubi

• Linear beam dynamics
• Closed orbit search
• Tune comparison with neighboring cells contribution

• Non-linear beam dynamics - Dynamical aperture
• Possible simple definition/computation for the 2D Dynamical aperture
• Methods/suggestions for calculating a dynamic aperture for 4D motion in a highly non-

linear and coupled lattice
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Presentation of the lattice and methods
Baseline arctan lattice & Methods to track with Zgoubi in adapted field map
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Reproduced with Zgoubi

• Realis'c fringe field fall off in Arctan(z) 

• Parameters given by S. Machida:

FETS-vFFA baseline lattice:

Lattice and methods – Arctan baseline lattice 

4Figures of S. Machida



Lattice and methods – Arctan baseline lattice
• Search for closed orbits at different energies for a single cell field map without taking into account the 

residual field of neighboring cells: 
• Need to relax the 𝑝! = 0 (vertical angle) condition to find something stable 
• 𝒑𝟎!=0 at the cell ends à Not a closed orbit on the entire ring

• The ver4cal orbit excursion is s'll visible and is similar
to the one obtained with other codes

• The magne4c field scales with energy
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Lattice and methods – Arctan baseline lattice
Significant neighboring cells influence due to the important residual field at the cell ends

à The residual field in the lattice in arctan is ± 0.1kG in all directions.
àThe transverse residual field explains the non-zero vertical angle (𝒑𝟎!=0 at the cell ends)
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Methods to account for the residual field of neighboring cells:

Lattice and methods – Methods
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1) Linear superposiEon by extending field maps
• Extent the integra'on zone to have field maps overlapping
• Valid for small residual fields to ensure that the trajectory devia'on due to 

this field is limited
• In the arctan laKce, the residual field is not negligible
à Method not valid for this laBce



Methods to account for the residual field of neighboring cells:

Lattice and methods – Methods
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2) Actual superposition of field maps

• Superposition of field maps with the same meshes
with Zgoubi à Construct the ‘left’ and ‘right’ field
maps due to rotated neighboring cells



Methods to account for the residual field of neighboring cells:
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2) Actual superposiEon of field maps

• Superposi4on of field maps with the same meshes
with Zgoubi à Construct the ‘leP’ and ‘right’ field
maps due to rotated neighboring cells

I. Construc'on of truncated field maps with ‘finite’ 
longitudinal/horizontal extents using Zgoubi
• Influence of the horizontal/longitudinal field map

extent on the orbit
àConvergence to neighboring field maps that cover the 

en<re orbit region

2) I.

2) I.



Methods to account for the residual field of neighboring cells:

Lattice and methods – Methods
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2) Actual superposition of field maps

• Superposition of field maps with the same meshes
with Zgoubi à Construct the ‘left’ and ‘right’ field
maps due to rotated neighboring cells

I. Construction of truncated field maps with ‘finite’ 
longitudinal/horizontal extents using Zgoubi
• Influence of the horizontal/longitudinal field map

extent on the orbit
àConvergence to neighboring field maps that cover the 

entire orbit region

II. Computation of the neighboring rotated fields
with analytical expressions à No border 
anymore (called ‘infinite’ or ‘perfect’ map in the following
slides)
àNeighboring field maps that cover the entire region of 

the orbit

2 I.2) II.

2) II.
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Fieldmap construction – Superposition
• After the construction, we use a Zgoubi Tosca option to superpose the field map with its

neighboring field maps
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Lattice and methods – Limits of integration
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Integration limits fixed by the polar character of the machine:
• We integrate between some droites de coupures (ddc) in Zgoubi, which are integration

limits. It may not match the cartesian field map edges. 
• Entry oblique ddc: 𝑡𝑎𝑛(𝜃)𝑋+𝑌=0
• Exit vertical dcc: 𝑋 = 280

• We have no map overlapping with well-chosen cut lines
• Perfect trajectory continuity between neighboring cells
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Linear beam dynamics
Closed orbit search & ComputaEon of the tunes 
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Influence of the fieldmap extents – Method
For a more systematic study of the increasing influence of neighboring cells, 
we use field maps with a very large longitudinal extension (220cm) but 
different horizontal extensions
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Influence of the fieldmap extents – Method
For a more systema,c study of the increasing influence of neighboring cells, 
we use field maps with a very large longitudinal extension (220cm) but 
different horizontal extensions

• Complete recovery of the 
orbit for a horizontal 
extension of 180cm: we
should see a convergence

àNo more change in the 
optics if we further 
increase the map
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Orbit convergence with the field map extension from rotated truncated field maps
computed with Zgoubi to « perfect » field map analytically computed

Closed orbits for different neighboring fieldmap extents

• The closed orbit given by S. Machida
(IBG) is put at an arbitrary ver'cal 
coordinate to compare the shape and 
the ver'cal extension

• Orbit convergence towards IBG orbit, 
which is the same as the orbit found
with the perfect field map

• Ver4cal excursion of the orbit with an 
increasing neighboring field map
extension 
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Linear beam dynamics - Computation of the tunes 
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Convergence of the tunes: 
• Tunes computed with the perfect map are 

(0.24362, 0.119732), compared with IBG 
tunes: (0.243445, 0.12002)

Computation of the lattice functions:
• Correct computation of the lattice function

with the Lebedev and Bogacz parametrization



Non-linear beam dynamics
2D Dynamic aperture - 4D Dynamic aperture 
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Dynamic aperture – 2D
Normalized dynamic aperture calculated with Zgoubi in eigenplanes on 100 turns

• Assumed ellipse-shaped phase space
• Small “stable” region, then a more diffuse region, but where the particles are not lost
• Islands à fixed points of order 4

17



Dynamic aperture – 2D
Normalized dynamic aperture calculated with Zgoubi in eigenplanes on 1000 turns

• The phase space is even more “diffuse”
• We still observe the islands (4th order fixed points)
• The 2D-dynamic aperture (assuming ellipse formula) in u and v spaces decrease

18



Dynamic aperture – 2D
Normalized dynamic aperture calculated with Zgoubi in eigenplanes on 1000 turns

• Tracking of 3 par'cles into the islands
• The tune is 0.25, as expected
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Dynamic aperture – Non-linearity considerations
The magnetic field in vFFA is highly non-linear:

• Non-elliptical shapes in the linearly decoupled phase spaces à The “2D-DA” need to be refined 
to take into account the non-linearity 
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The magnetic field in vFFA is highly non-linear:
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Non-elliptical shape; 2D-DA
• Different computa'on methods for the 2D-DA:

• Assumed ellipse-shaped phase space
• Computa'on of the average of linear invariants
• Integra4on around the innermost points of the phase space area
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Non-elliptical shape; 2D-DA

Non-linear coupling; “4D-DA”

• Different computation methods for the 2D-DA:

• Assumed ellipse-shaped phase space
• Computation of the average of linear invariants
• Integration around the innermost points of the phase space area

• More robust definition for the 4D betatron motion:
• Literature review for the 2D and 4D betatron motion
• Computation of 2D-DA for different amplitude ratios between decoupled planes
• Computation of a “theoretical” 4D-DA (average distance) to compare working points
• Computation of a “practical” DA based on precautionary principle for better interpretation



Possible definitions for 2D-DA:

Dynamic aperture – 2D

Assume ellipse-shaped space
• ComputaLon of the Courant-

Snyder invariant at a given point

Average of linear invariants
• Average of the emiNances 

computed with the ellipse 
formula for each blue point in 
the cloud (each turn)

Integration over phase space
• Points cloud in 𝑹 − 𝜽 form and 

integrate around the innermost 
points of the phase space area
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Dynamic aperture 2D – FETS-vFFA
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Ellipse formula Average of linear invariants

• 𝑒" = 42.016 𝜋 𝑚𝑚𝑚𝑟𝑎𝑑,
• 𝑒# = 35.412 𝜋𝑚𝑚𝑚𝑟𝑎𝑑

IntegraYon over phase space

We obtain something very similar between the DA calculated with 
the average of the linear invariants and the DA calculated with the 
integration over the phase space



Dynamic aperture – 4D
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• Examples of papers that extensively discuss Dynamic Aperture: 

• E. Todesco and M. Giovannozzi, ‘Dynamic aperture estimates and phase-space
distortions in nonlinear betatron motion’, Phys. Rev. E 53(4), 4067 (1996).

• M. Giovannozzi and E. Todesco, Numerical methods to estimate the dynamic aperture, 
Part. Accel. 54, 203 (1996). 

• S. Tygier, et al., ‘The PyZgoubi framework and the simulation of dynamic aperture in 
fixed-field alternating-gradient accelerators’, Nuclear Instruments and Methods in 
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated 
Equipment, 775, pp. 15–26 (2015).

• Giovannozzi, M., Scandale, W. and Todesco, E. (1996) ‘Prediction of Long-Term Stability
in Large Hadron Colliders’, LHC Project Report 45-Rev.

• Bojtár, L. (2020) ‘Frequency analysis and dynamic aperture studies in a low energy
antiproton ring with realistic 3D magnetic fields’, Physical Review Accelerators and 
Beams, 23(10), p. 104002. 



• « General » definition: stability domain – particles bounded after N turns

• Dependent on N, and N depends on the application 
àHow many turns do we need for the full acceleration cycle? 
àFor hadron storage ring: predict « long-term » stability

• Dependent on the motion we look at: 

• 2D betatron motion, without coupling
àStability domain = phase space area of initial conditions that survive N turns
àBorder between stable/unstable motion (1D KAM torus) à stability domain enclosed by the 
last connected stable invariant curve

• 4D betatron motion, including coupling
à Stability domain = phase space volume of initial conditions that survive N turns
à Volume may be irregular/have holes but generally not the case 
à Dynamic aperture: radius of the hypersphere with the same volume as the stability domain

Dynamic aperture – General considerations
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• Methods without averaging - precau,onary principle: 
• With the linear definiLon, the ellipse depends on the direcLon 

because of the phase distorLon
à Choose the smaller possible ellipse.

• Methods that give an average distance to stability border:

• Direct integration:
• Scan on all phase space variables needed

• Integration over the dynamics
• Fix 𝜃 and replace the space average with average over the N iterates
• Uniform distribution of the phases of the iterates needed

• Normal form method: 
• Compute the NL invariant with the truncated inverse conjugating function
• Not valid close to a resonance

Dynamic aperture – 2D betatron motion

25

S. Tygier, et al., Nucl.Instrum.MethodsPhys. Res., Sect. A , 775,  (2015).



• Coupling between ‘linearly decoupled’ planes due to non-linearities
à Ratio between the amplitudes in the different planes; Use of 𝛼 such that 𝑥 = 𝑟 𝑐𝑜𝑠(𝛼) and 𝑦 = 𝑟𝑠𝑖𝑛 𝛼

• «Fast DA estimates», commonly used : 3
4
= 1 (𝛼 = 455) with 𝜃6 = 𝜃7 = 0

àUnprecise results, can not be used with non-negligible phase space distortion or ‘ratio-dependent’ 
dynamics

• Methods that give an average distance to stability border:

• Direct integration:
• Scan on all phase space variables 
à 4 variables; CPU time consuming

• Integration over the dynamics
• Generalization of the 2D case

• Normal form method
• Generalization of the 2D case

• Methods without averaging: 
• Scan different 𝛼 and take the minimum DA

Dynamic aperture – 4D betatron motion
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• ComputaLon of 2D-DA (𝜖8, 𝜖9) for different amplitude raTos between the decoupled planes 
to account for the non-linearity
• EvoluMon of the 𝜖! 𝑒𝑡 𝜖" invariants as a funcMon of 𝛼 and computaMon of the average of 𝜖! and 𝜖"; 
𝜖! and 𝜖" can be related to measurable parameters with appropriate laNce funcMons (linear coupling).

• ComputaLon of a “theoreTcal” 4D-DA esTmate (average distance to the stability border) to 
compare working points 
• Direct integraMon: scan all the phase space variables
• IntegraMon over the dynamics
• The 4th order islands of stability are taken into account, and a metric represenMng the « filling factor » 

is being defined to account for the topology of the phase space

• ComputaLon of a “pracTcal” DA based on precauLonary principle for beXer interpretaTon
• Launch an ellip,cal shape bunch à Every parMcle needs to survive N turns
à Define the DA in the coupled space

Dynamic aperture – 4D motion – « roadmap »
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Methods for 4D motion dynamic aperture computation in a strongly non-linear and coupled lattice



• Fieldmaps for the FETS-vFFA arctan lattice have been generated, and particles tracked with Zgoubi

• There is an important influence of neighboring cells due to the significant cell ends residual fields
à The actual superposition of field maps is needed

• The detailed study of the linear transverse beam dynamics has been performed

• The influence of the neighboring cell field map extents on the orbit and tunes have been studied, and convergence
towards the ‘infinite’ map has been found

• The tunes and lattice functions have been computed and are similar to those obtained with other codes

• An in-depth study of the non-linear dynamics of the lattice is in progress

• The 2D normalized dynamic apertures were calculated in the decoupled planes with Zgoubi, without non-linearities; 
Islands of stability appear in phase space.

• Different definitions and methods to calculate the DA exist in the literature for 2D and 4D betatron motion; it includes
definitions based on a phase space variable average or the ‘precautionary principle’.

• Methods to study completely the 4D motion dynamic aperture in a strongly non-linear and coupled lattice have been 
suggested. An in-depth study of dynamic aperture in the full 4D phase space is still in progress.

Summary
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