Modelling H- Injection and Painting in Vertical and Horizontal FFAs Using OPAL

C. T. Rogers

Science and Technology Facilities Council ISIS Neutron and Muon Source

Charge Exchange Injection + Painting

- Ion source generates Hydrogen atoms with an extra electron
 - "H-" ions
- Accelerate and inject H- on top of circulating proton beam
 - H- and protons pass through a dipole at different angles → merge
 - Pass H- through a thin Carbon foil
 - H- are ionised leaving protons
- Painting the beam enables build up of different beam shapes
 - Inject H- at distance from the circulating proton beam core
 - Develop different beams e.g. "correlated" and "anti-correlated"
- Goal: minimise protons passing through foil
- Eventually move beam off foil for acceleration

Vertical FFA

3

Tracking simulation - vFFA

vFFA has strongly coupled optics, from Maxwell's equations

- Skew quadrupole focusing in magnet body
- Solenoid focusing in magnet fringe field
- Vertical kick in fringe field if beam is not perfectly central

Injection simulation - vFFA

- Use bump magnet to distort closed orbits
 - Now we need both horizontal and vertical bumps
- Challenging to achieve sufficient DA with good orbit separation
 - Option:- use F magnet to separate H- and H+ orbits

Horizontal FFA

Challenges

- Thin foil & foil handling issues
- Maintaining sufficient DA
- Space for septum and H- beam
 - Without disturbing main magnets
- Control/time structure of pulsed magnets
- Management of injection with tune variation
 - Probably choose to move injection orbit

Injection

- Use bump magnet to distort closed orbits
 - Movement of circulating proton beam over 200 mm
 - 0.1 m long bump magnets
 - Max field ~ 0.30 T
- Concern about DA

0.1 T merge dipole

Dynamic Aperture

Caveat: Feb 2022 baseline

Injection process

- Inject H⁻
- Sweep H⁻ beam up
- Sweep H⁺ close orbit horizontally
- Paint full phase space

- Collapse bump
- Beam moves clear of foil

Movie

Tune correction (S. Machida)

Conclusions

Studies of injection in a small test ring

- HFFA
 - Good closed orbit separation
 - Sufficient DA
 - Need to update for new lattice
 - Need to account for variable tunes (moving proton closed orbit)
- VFFA
 - Move proton orbit arbitrarily in x-y plane
 - Still looking for good DA with sufficient orbit separation
 - Idea to use foil in F magnet to get orbit separation (WIP)