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𝐻𝐻 𝑥𝑥,𝑝𝑝, 𝑡𝑡 ⩵
1
2
𝐴𝐴𝑝𝑝 𝑡𝑡 2 + 1 − Cos 𝑥𝑥 𝑡𝑡 𝑉𝑉 𝑡𝑡

Hamiltonian

1H[t] is calculated from x[t] & p[t], not visa versa
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ADIABATIC CAPTURE OF LONGITUDINAL PHASE SPACE IN RISING VOLTAGE RF BUCKET

Where: Circular, charged-particle accelerator; constant magnetic field; fixed-frequency RF electric fields
What process: take an un-bunched, coasting, particle beam and capture into a rising-voltage RF bucket 
while controlling emittance growth
Theory outputs: Universal trapping law; Bunch momentum spectrum; Bunch longitudinal profile; 
Optimized voltage law (exponential); Prediction of r.m.s. spread of Hamiltonian, etc.

𝐻𝐻 𝑥𝑥,𝑝𝑝, 𝑡𝑡 ⩵
1
2
𝐴𝐴𝑝𝑝 𝑡𝑡 2 + 1 − Cos 𝑥𝑥 𝑡𝑡 𝑉𝑉 𝑡𝑡

Hamiltonian

𝑉𝑉 0 ⩵
𝑉𝑉 𝑇𝑇
C0

Start: t=0; Stop t=T
𝑉𝑉 𝑡𝑡 ⩵ 1 −

1 − C0 ⁄−1 Np 𝑡𝑡
𝑇𝑇

−Np
V0
C0

Family of Voltage 
Laws, Np>0

Np=2 gives so-called iso-adiabatic capture law
 Lilliequist & Symon, MURA-491 (1959);
 U. Bigliani, CERN-SI-Int-EL-68-2 (1968)

Ideally C0 >>100

https://lss.fnal.gov/lists/fermilab-reports-mura.html

Note: this Hamiltonian does not change the nature 
of the fixed points (x,p)=(0,0) and (x,p)=(π,0); and 
so the Jacobi elliptic functions can be used as 
short-term approximate solutions.

]𝑉𝑉[𝑡𝑡 ]𝑉𝑉′′[𝑡𝑡 ⩵ 1 +
1

Np
]𝑉𝑉′[𝑡𝑡 2Are the solutions of 
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H0 𝑥𝑥, 𝑝𝑝 ⩵
1
2𝐴𝐴𝑝𝑝 𝑡𝑡

2The un-bunched particle 
beam has Hamiltonian

With H0 running from 0 to H0max

Phase Space Area = (momentum)x(displacement)
Equating the initial (100%) area of the beam, 4π pmax, to 
the area of the final RF-bucket, 16 Sqrt[V[T]/A], 
we find the required capture voltage:

V[T] →
1

16𝐴𝐴𝜋𝜋
2Pmax2 V[T] →

H0max 𝜋𝜋2

8

De-bunching

Bunching

C0=500
C0=100

REQUIRED FULL BUCKET CAPTURE VOLTAGE V[T]

]𝑉𝑉[𝑇𝑇 ⩵ 1 −
1 − 𝐶𝐶𝐶 ⁄1 Np 𝑡𝑡

𝑇𝑇

−Np

V0

DEBUNCHING VOLTAGE LAW
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Solutions of the pendulum oscillator Hamiltonian are the Jacobi elliptic functions with amplitude parameter “m”
These functions are defined both inside (m<1) and outside (m>1) the separatrix (m=1)

Period = Tau ⩵ 4EllipticK 𝑚𝑚Libration (bounded motion, m<1)

𝑥𝑥 𝑡𝑡 ⩵ 2ArcSin 𝑚𝑚JacobiSN 𝑡𝑡,𝑚𝑚 𝑝𝑝 𝑡𝑡 ⩵ 2 𝑚𝑚JacobiCN 𝑡𝑡,𝑚𝑚

𝑥𝑥 𝑡𝑡 ⩵ 2ArcSin 𝑚𝑚JacobiCD 𝑡𝑡,𝑚𝑚 𝑝𝑝 𝑡𝑡 ⩵ −2 1 −𝑚𝑚 𝑚𝑚JacobiSD 𝑡𝑡,𝑚𝑚

Rotation (unbounded motion, m>1) Two − periods = Tau ⩵ 4
1
𝑚𝑚 EllipticK

1
𝑚𝑚

𝑥𝑥 𝑡𝑡 ⩵ 2ArcSin JacobiSN 𝑚𝑚𝑡𝑡,
1
𝑚𝑚

𝑝𝑝 𝑡𝑡 ⩵ 2 𝑚𝑚JacobiDN 𝑚𝑚𝑡𝑡,
1
𝑚𝑚

𝑥𝑥 𝑡𝑡 ⩵ 2ArcSin JacobiCD 𝑚𝑚𝑡𝑡,
1
𝑚𝑚

𝑝𝑝 𝑡𝑡 ⩵ −2 −1 + 𝑚𝑚JacobiND 𝑚𝑚𝑡𝑡,
1
𝑚𝑚

Instantaneous Hamiltonian H=2mV
Capture condition: H(t)<2V(t)
Final, bounding Hamiltonian H=2V[T]

Parameter “m” is presumed to be a 
constant (chosen for each trajectory)

(1)

(2)

(3)

(4)

Here the small-amplitude 
synchrotron frequency w
is set at unity. To restore w 
make the substitutions
t→wt and τ→wτ
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CHANGE OF HAMILTONIAN IN RISING VOLTAGE RF BUCKET

At t=0, largest value of 𝑚𝑚⩵
H0max
2𝑉𝑉 0

⩵
4C0
𝜋𝜋2

>> 1

At t=T, all captured particles have m<1

But if V[t] varies slowly enough, we may hope that the Jacobi functions with m[t] are still valid solutions for at 
least one 1/2-period: that is one up & down the confining potential (or one down & up) 

𝐻𝐻′ 𝑡𝑡 ⩵ 1 − Cos 𝑥𝑥 𝑡𝑡 𝑉𝑉′ 𝑡𝑡The rate of change of 
the Hamiltonian is

Inside the bucket we may substitute Jacobi solutions (1) or (2) for x[t]

𝐻𝐻′ 𝑡𝑡 ⩵ 2𝑚𝑚JacobiSN 𝑡𝑡 − t0 𝑤𝑤,𝑚𝑚 2𝑉𝑉′ 𝑡𝑡For example,

But if V[t] varies slowly enough compared with the oscillation period, we may replace the instantaneous 
Jacobi function with its average effect over one ½-period ; by integrating from –τ/4 to +τ/4, and dividing by 
τ/2. Essentially this is the work done by the changing potential during a ½-period.

𝐻𝐻′ 𝑡𝑡 ⩵ 2 1 −
EllipticE 𝑚𝑚
EllipticK 𝑚𝑚 𝑉𝑉′ 𝑡𝑡
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Inside the bucket, for most trajectories most of the time m<<1, so we may substitute the Taylor series expansion 

𝐻𝐻′ 𝑡𝑡 ⩵ 𝑚𝑚 +
𝑚𝑚2

8
+
𝑚𝑚3

16
+ ⋯ 𝑉𝑉′ 𝑡𝑡

We retain only the first order term and substitute m=H(t)/(2V(t))

𝐻𝐻′ 𝑡𝑡 ⩵
𝐻𝐻 𝑡𝑡 𝑉𝑉′ 𝑡𝑡

2𝑉𝑉 𝑡𝑡 The solution is 𝐻𝐻 𝑡𝑡 > 𝑡𝑡𝑡𝑡 ⩵
𝐻𝐻 tc 𝑉𝑉 𝑡𝑡

𝑉𝑉 tc
Where tc is the time of capture

So, inside the bucket, the Hamiltonian grows (approximately) as Sqrt[time]

Outside the bucket we may substitute Jacobi solutions (3) or (4) for x[t] into the expression for dH/dt

For example, 𝐻𝐻′ 𝑡𝑡 ⩵ 2JacobiCD 𝑚𝑚 −t0 + 𝑢𝑢 𝑤𝑤,
1
𝑚𝑚

2

𝑉𝑉′ 𝑡𝑡

But if V[t] varies slowly enough compared with the oscillation period, we may replace the instantaneous 
Jacobi function with its average effect over one ½-period ; by integrating from –τ/4 to +τ/4, and dividing by 
τ/2. Essentially this is the work done by the changing potential during a ½-period.

𝐻𝐻′ 𝑡𝑡 ⩵ 2𝑚𝑚 1 −
EllipticE 1

𝑚𝑚

EllipticK 1
𝑚𝑚

𝑉𝑉′ 𝑡𝑡
7



Outside the bucket, for most trajectories most of the time m>>1, so we may substitute the series expansion 

𝐻𝐻′ 𝑡𝑡 ⩵ 1 +
41

1024𝑚𝑚3 +
1

16𝑚𝑚2 +
1

8𝑚𝑚
+ ⋯ 𝑉𝑉′ 𝑡𝑡 We retain only the first order term 

𝐻𝐻′ 𝑡𝑡 ⩵ 𝑉𝑉′ 𝑡𝑡 The solution is H 𝑡𝑡 ⩵ H[0] − 𝑉𝑉 0 + 𝑉𝑉 𝑡𝑡

TO SUMMARISE: Adiabatic capture is a two-step process.
Step 1) almost linear growth of Hamiltonian (from t=0) until capture at t=tc
At capture H[t]=2V[t] @ t=tc
Step 2) Sqrt[t] growth from capture until the voltage ramp is complete at t=T

𝐻𝐻 𝑇𝑇 ⩵
𝜋𝜋 𝐻𝐻 0 𝑉𝑉 𝑇𝑇

2
To lowest order 

Cascading these two steps leads to a final energy capture law 
H[T]=f(H[0]) that is independent of the voltage law V(t) provided 
only that it is “adiabatic”. 
[Note, the time of capture (tc) depends on the voltage law; but the 
Hamiltonian value at tc is independent of the voltage law.] H[t] 

inside
H[t] outside

2V[t]

tc8



V(t)

H[t]≈H[0]+V[t] H[t]≈Sqrt[H[tc]V[t]]

CHANGE OF HAMILTONIAN IN RISING VOLTAGE RF BUCKET

H[t] averaged over initial RF phases x(t=0)

Final capture 
voltage V[T]=3

x

Initial (x,p) phase space

H0 𝑥𝑥, 𝑝𝑝 ⩵
1
2
𝐴𝐴𝑝𝑝 𝑡𝑡 ≤ 0 2 Numerical integration of the equations of motion for p[t] and x[t].

Then calculate H[t]; average H[t] over x(t=0); and calculate 
δH[t]=H[t]-<H[t]> . 
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Capture condition: H[t]<2V[t]

V[T]=3

CHANGE OF HAMILTONIAN IN RISING VOLTAGE RF BUCKET
Numerical solution of Equations of motion for x,p
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There are a variety of possible “adiabaticity parameters”

For example, the condition that dV/dt can be moved outside the integral is “change in V’ during ½ period 
is very small” implies ε= ΔV’/V’ =(V’’τ/2)/V’ =(V”/V’)π/Sqrt[AV] <<1; as used by Lilliequist & Symon.
Other possible adiabaticity parameters are
ΔV/V =(V’τ/2)/V = (V’/V)π/Sqrt[AV]
ΔV/V=(1/2) (V"/V)(τ/2)^2 = (π^2/2)V”/(A V^2), etc.

]𝑉𝑉[𝑡𝑡 ]𝑉𝑉′′[𝑡𝑡 ⩵ 1 +
1

Np
]𝑉𝑉′[𝑡𝑡 2Because the voltage laws all satisfy

most of these choices produce similar ranking 
of cases as function of C0, T, Np

Blue=Np=2; gold=Np=1; green=Np=4; coral=Np=10; purple=Np=20
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ε[t]=
C0

1
2−

1
Np −1+C0

1
Np 1+Np 𝜋𝜋 1+

−1+C0 ⁄−1 Np 𝑡𝑡
𝑇𝑇

−1+Np2

𝑇𝑇 𝐴𝐴V0

By inspection, ε = constant (iso-adiabatic) when Np = 2
Note: cases with Np>2 become MORE adiabatic at later times
Note: time of capture, tc, is increasingly skewed toward late times 
as C0 increases.

Np=1

Np=2

Np=4Np=20

So we rank degree of adiabaticity
according to ε(T) at end of capture

12
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Np=20



]𝜖𝜖[𝑇𝑇 ==
−1 + C0

1
Np 1 + Np 𝜋𝜋

𝑇𝑇 𝐴𝐴 ]𝑉𝑉[𝑇𝑇

]𝑉𝑉′[𝑇𝑇
]𝑉𝑉[𝑇𝑇
⩵

−1 + C0
1
Np Np

𝑇𝑇

V’/V is a surrogate for ε[T] at fixed A.V[T]

]𝜖𝜖[𝑇𝑇, Np ⩵∞ ⩵
𝜋𝜋 ]Log[C0
𝑇𝑇 𝐴𝐴 ]𝑉𝑉[𝑇𝑇]𝜖𝜖[𝑇𝑇 ⩵

1 + Np 𝜋𝜋 ]𝑉𝑉′[𝑇𝑇
Np 𝐴𝐴 ]𝑉𝑉[𝑇𝑇 ]𝑉𝑉[𝑇𝑇

V[t=0]=V[T]/C0
Ideally, we want C0 large as possible.
But, the smaller is V[t=0], the larger is ε[T]
But ε[T] is monotonic decreasing in Np.
The smallest value is

Taking the limit Np→∞, the voltage law 
becomes the exponential function

]𝑉𝑉[𝑡𝑡 ⩵ C0−1+
𝑡𝑡
𝑇𝑇 ]𝑉𝑉[𝑇𝑇

The exponential is the fastest possible adiabatic voltage law

V′[t]/V[t] ⩵
]Log[C0

𝑇𝑇

Allows C0>>1000 to be pushed to technological limit 
of LLRF control

𝑉𝑉′/𝑉𝑉 𝑇𝑇
𝑉𝑉′/𝑉𝑉 0 ⩵ C0

1
Np
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Show[{l500, l200, l100, l40, l30, l501, l201, l101, 
l20, l41, l31, l502, l202, l102, l21, l42, l32, l503, 
l203, l103, l22, l10}]

Show[{ l10, l43, l33, l504, l204, l104, l23, 
l11, l44, l34, l24, l12, l13, l14}

{l24,l12,13,14} omitted – because difference 
is large

C0 T Np V'[T]/V[T] index
50 2000 50 0.002035 l500
50 2000 20 0.00216 l200
50 2000 10 0.002394 l100
50 2000 4 0.003318 l40
50 2000 3 0.004026 l30
50 1000 50 0.004069 l501
50 1000 20 0.004321 l201
50 1000 10 0.004788 l101
50 2000 2 0.006071 l20
50 1000 4 0.006637 l41
50 1000 3 0.008052 l31
50 500 50 0.008138 l502
50 500 20 0.008642 l202
50 500 10 0.009575 l102
50 1000 2 0.012142 l21
50 500 4 0.013273 l42
50 500 3 0.016104 l32
50 250 50 0.016277 l503
50 250 20 0.017283 l203
50 250 10 0.01915 l103
50 500 2 0.024284 l22
50 2000 1 0.0245 l10
50 250 4 0.026546 l43
50 250 3 0.032208 l33
50 125 50 0.032553 l504
50 125 20 0.034567 l204
50 125 10 0.038301 l104
50 250 2 0.048569 l23
50 1000 1 0.049 l11
50 125 4 0.053093 l44
50 125 3 0.064417 l34
50 125 2 0.097137 l24
50 500 1 0.098 l12
50 250 1 0.196 l13
50 125 1 0.392 l14

ΔH[T] is the deviation from the apparent smooth curve H[T]

14



Show[{l500, l200, l100, l40, l501, l201, l30, l101, 
l41, l20, l502, l202, l31, l102, l42, l21, l503, l203, 

l32, l103, l43, l22}]

Show[{l504, l204, l33, l104, l10, l44, l23, 
l34, l11, l24, l12, l13, l14}

{l24,l12,13,14} omitted – because 
difference is too large

C0 T Np V'[T]/V[T] index
100 2000 50 0.002412 l500
100 2000 20 0.0025893 l200
100 2000 10 0.0029245 l100
100 2000 4 0.0043246 l40
100 1000 50 0.0048239 l501
100 1000 20 0.0051785 l201
100 2000 3 0.0054624 l30
100 1000 10 0.0058489 l101
100 1000 4 0.0086491 l41
100 2000 2 0.009 l20
100 500 50 0.0096478 l502
100 500 20 0.010357 l202
100 1000 3 0.0109248 l31
100 500 10 0.0116979 l102
100 500 4 0.0172982 l42
100 1000 2 0.018 l21
100 250 50 0.0192956 l503
100 250 20 0.020714 l203
100 500 3 0.0218495 l32
100 250 10 0.0233957 l103
100 250 4 0.0345964 l43
100 500 2 0.036 l22
100 125 50 0.0385913 l504
100 125 20 0.0414281 l204
100 250 3 0.0436991 l33
100 125 10 0.0467915 l104
100 2000 1 0.0495 l10
100 125 4 0.0691929 l44
100 250 2 0.072 l23
100 125 3 0.0873981 l34
100 1000 1 0.099 l11
100 125 2 0.144 l24
100 500 1 0.198 l12
100 250 1 0.396 l13
100 125 1 0.792 l14

ΔH[T] is the deviation from the apparent smooth curve H[T]
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Show[{l500, l200, l100, l501, l201, l40, 
l101, l30, l502, l202, l41, l102, l31, l20, 

l503, l203, l42, l103}]

Show[{l32, l21, l504, l204, l43, l104, l33, 
l22, l44, l34}

{l23, l10, l24, l11, l12, l13, l14} omitted because 
difference is too large

C0 T Np V'[T]/V[T] index
500 2000 50 0.0033087 l500
500 2000 20 0.0036442 l200
500 2000 10 0.0043082 l100
500 1000 50 0.0066173 l501
500 1000 20 0.0072884 l201
500 2000 4 0.0074574 l40
500 1000 10 0.0086165 l101
500 2000 3 0.0104055 l30
500 500 50 0.0132347 l502
500 500 20 0.0145769 l202
500 1000 4 0.0149148 l41
500 500 10 0.0172329 l102
500 1000 3 0.020811 l31
500 2000 2 0.0213607 l20
500 250 50 0.0264693 l503
500 250 20 0.0291537 l203
500 500 4 0.0298297 l42
500 250 10 0.0344658 l103
500 500 3 0.041622 l32
500 1000 2 0.0427214 l21
500 125 50 0.0529387 l504
500 125 20 0.0583074 l204
500 250 4 0.0596593 l43
500 125 10 0.0689316 l104
500 250 3 0.0832441 l33
500 500 2 0.0854427 l22
500 125 4 0.1193187 l44
500 125 3 0.1664881 l34
500 250 2 0.1708854 l23
500 2000 1 0.2495 l10
500 125 2 0.3417709 l24
500 1000 1 0.499 l11
500 500 1 0.998 l12
500 250 1 1.996 l13
500 125 1 3.992 l14

ΔH[T] is the deviation from the apparent smooth curve H[T]
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Show[{l500, l200, l100, l501, l201, l40, 
l101, l30, l502, l202, l41, l102, l31, l503, 

l20, l203, l42, l103}]

Show[{l32, l504, l21, l204, l43, l104, 
l33, l22, l44}]

{l34, l23, l24, l10, l11, l12, l13, l14} omitted 
because large difference

C0 T Np V'[T]/V[T] index
1000 2000 50 0.003704 l500
1000 2000 20 0.004125 l200
1000 2000 10 0.004976 l100
1000 1000 50 0.007408 l501
1000 1000 20 0.008251 l201
1000 2000 4 0.009247 l40
1000 1000 10 0.009953 l101
1000 2000 3 0.0135 l30
1000 500 50 0.014815 l502
1000 500 20 0.016502 l202
1000 1000 4 0.018494 l41
1000 500 10 0.019905 l102
1000 1000 3 0.027 l31
1000 250 50 0.029631 l503
1000 2000 2 0.030623 l20
1000 250 20 0.033003 l203
1000 500 4 0.036987 l42
1000 250 10 0.03981 l103
1000 500 3 0.054 l32
1000 125 50 0.059261 l504
1000 1000 2 0.061246 l21
1000 125 20 0.066006 l204
1000 250 4 0.073975 l43
1000 125 10 0.079621 l104
1000 250 3 0.108 l33
1000 500 2 0.122491 l22
1000 125 4 0.147949 l44
1000 125 3 0.216 l34
1000 250 2 0.244982 l23
1000 125 2 0.489964 l24
1000 2000 1 0.4995 l10
1000 1000 1 0.999 l11
1000 500 1 1.998 l12
1000 250 1 3.996 l13
1000 125 1 7.992 l14

ΔH[T] is the deviation from the apparent smooth curve H[T]
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Exponential Voltage 
Law V’/V=Log[C0]/T

C0 T V'[T]/V[T] index
50 2000 0.001956 E10

100 2000 0.002303 E20
500 2000 0.003107 E30

1000 2000 0.003454 E40
50 1000 0.003912 E11

100 1000 0.004605 E21
500 1000 0.006215 E31

1000 1000 0.006908 E41
50 500 0.007824 E12

100 500 0.00921 E22
500 500 0.012429 E32

1000 500 0.013816 E42
50 250 0.015648 E13

100 250 0.018421 E23
500 250 0.024858 E33

1000 250 0.027631 E43
50 125 0.031296 E14

100 125 0.036841 E24
500 125 0.049717 E34

1000 125 0.055262 E44

Show[{e10, e20, e30, e40, e11, 
e21, e31, e41, e12, e22}]

Show[{e32, e42, e13, e23, e33, e43, 
e14, e24, e34, e44}

Final capture 
voltage V[T]=3

ΔH[T] is the deviation from the apparent smooth curve H[T]
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We have shown that H[T] is almost a universal function of H[0], almost independent of C0, Np and T, 
provided that adiabaticity parameter ε(T)< few %

Question: But “how do the voltage laws differ?”
Answer: The r.m.s. values of δH[T] about H[T]

Ideally one value H[0] maps uniquely to a single H[T].
However, there is a point spread function such that each H[0] maps to a narrow band H[T]±δH[T]
δH represents phase mixing due to imperfect adiabaticity.

There are two separate non-adiabatic processes which generate spreads δH
1) Sudden voltage turn on at t=0 
2) Crossing the separatrix (m=1) at time tc, for H[0] > 2V[T]/C0

19



Sudden voltage turn-on lifts ALL values of Hamiltonian at t=0
Sudden voltage turn-on adds spread δH to ALL values of Hamiltonian at t=0

]𝐻𝐻[0 → ]𝐻𝐻[0 + 1 − ]Cos[𝑥𝑥 ](𝑉𝑉[𝑇𝑇 /C0)

For those trajectories captured at t=0, i.e. for H[0] < 2V[T]/C0, the Hamiltonian will be inflated to 
H[T]=H[0] Sqrt[V[T]/V[0]] = H[0] Sqrt[C0].
But ]𝐻𝐻[0 → ]𝐻𝐻[0 + ](𝑉𝑉[𝑇𝑇 /C0)
So the lift at t=T becomes ΔH[T]= (V[T]/C0)Sqrt[C0] = V[T]/Sqrt[C0]

The r.m.s spread at t=0 is V/C0/Sqrt[2]. This will be inflated to t=T by Sqrt[C0].

For trajectories having Hamiltonian value H[0]< 2V[T]/C0 prior to voltage turn-on, each H[0] value 
will acquire a lift ΔH = V[T]/Sqrt[C0] and an r.m.s spread V/Sqrt[2C0] at t=T

δH ⩵−
V ]Cos[𝑥𝑥

C0

V[0]=V[T]/C0

20

Average lift increment ΔH = V[0]Integrate[(1-Cos[x]),{x,-π,+π}]/(2π) =  V[T]/C0

Common spread=

We integrate  δH2 over x={-π,+π} to find the variance. The common r.m.s spread at t=0 is V/C0/Sqrt[2]. 

How this initial spread evolves depends on whether H[0] is inside or outside the initial RF bucket at t=0.

x ={-π,+π}
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For those trajectories NOT captured at t=0, i.e. for H[0] > 2V[T]/C0, the Hamiltonian will 
be inflated to H[T]= a0Sqrt[H[0]]
But ]𝐻𝐻[0 → ]𝐻𝐻[0 + ](𝑉𝑉[𝑇𝑇 /C0)
So the lift ΔH at t=T becomes

The r.m.s spread at t=0 is δH[0]= V[T]/C0/Sqrt[2]. This will be evolved to δH[T] in the same way as above. 

]ΔH[𝑇𝑇 →
𝑎𝑎0 ]𝑉𝑉[𝑇𝑇

2C0 ]𝐻𝐻[0
−

𝑎𝑎0 ]𝑉𝑉[𝑇𝑇 2

8C02 ]𝐻𝐻[0 ⁄3 2

]𝐻𝐻[𝑇𝑇 + ]ΔH[𝑇𝑇 ⩵ 𝑎𝑎0 ]𝐻𝐻[0 +
]𝑉𝑉[𝑇𝑇

C0
⩵ ]𝐻𝐻[0 𝑎𝑎0 1 +

]𝑉𝑉[𝑇𝑇
C0 ]𝐻𝐻[0

2 ]δH[𝑇𝑇 →
𝑎𝑎0 ]𝑉𝑉[𝑇𝑇

2C0 ]𝐻𝐻[0
−

𝑎𝑎0 ]𝑉𝑉[𝑇𝑇 2

8C02 ]𝐻𝐻[0 ⁄3 2

To 2nd order

To 2nd order

So, for H[0] > 2V[T]/C0, the lift and spread both fall monotonically, roughly as
1

]𝐻𝐻[0

If there are other processes generating spreads, then the initial spread due to 
sudden turn-on will set the baseline



𝐻𝐻′ 𝑡𝑡 ⩵ 1 − Cos 𝑥𝑥 𝑡𝑡 𝑉𝑉′ 𝑡𝑡
The instantaneous rate of 
change of the Hamiltonian is

𝐻𝐻′ 𝑡𝑡 ⩵ 𝑉𝑉′ 𝑡𝑡 Integrate[ 1 − Cos 𝑥𝑥 𝑡𝑡 , 𝑡𝑡,−
𝜏𝜏
4

,
𝜏𝜏
4

]/(2τ)Previously we assumed that we could 
form the average rate over one up/down 
or down/up

This assumption breaks down if either: (a) V’/V, or (b) Jacobi m[t] change too quickly. 
We consider case (a) that V’[t] cannot be considered constant during the half period
We presume this condition occurs during separatrix crossing at t=tc; because m→1 and the period is longest 
at this time.
(For the linear voltage law V’[t]=constant, both assumptions are broken.)

𝑡𝑡 −
𝜏𝜏
4 , 𝑡𝑡 +

𝜏𝜏
4

22

There is in fact a third process which is potentially non-adiabatic. However, it is often 
masked/obscured by propagation of the initial sudden turn-on, unless C0 is large and/or T is too short
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Non-adiabatic growth of Hamiltonian during separatrix crossing
We assume the crossing to be a one-time event* during which H[tc] acquires a spread due to the dependence on the 
phase of the oscillation immediately prior to crossing. This spread is later inflated by Sqrt[V[T]/V[tc]] inside the bucket.

δ𝐻𝐻𝐻[𝑡𝑡] ⩵ 1 − Cos 𝑥𝑥 𝑡𝑡 𝑉𝑉′′ 𝑡𝑡𝑡𝑡 𝑡𝑡

𝑡𝑡,−
𝜏𝜏
4

,
𝜏𝜏
4

We integrate over to find δH[tc]

We approximate V’[t] during the crossing by V’[tc]+V’’[tc](t-tc)

*The assumption that H-spread is acquired only in a one-time event 
(and is not a continuous process) is a CONJECTURE, yet to be proven.



]δH[tc ⩵�
−𝜏𝜏4

𝜏𝜏
4

2𝑡𝑡 �JacobiCD[ 𝑚𝑚 𝑞𝑞 + 𝑡𝑡𝑤𝑤 ,
1
𝑚𝑚

2

]𝑉𝑉′′[tc d𝑡𝑡

]δH[tc ⩵�
−𝜏𝜏4

𝜏𝜏
4

2𝑚𝑚𝑡𝑡 ]JacobiSN[𝑞𝑞 + 𝑡𝑡𝑤𝑤,𝑚𝑚 2 ]𝑉𝑉′′[tc d𝑡𝑡

Outside

Inside

“q” is the initial phase of the 
oscillation prior to separatrix crossing

The integrals can be performed as series expansions if Jacobi^2 is substituted by its Fourier series (Whittaker and Watson) 

To lowest order in Jacobi “m” parameter

Outside ]δH[tc ⩵ 𝜋𝜋 ]Sin[2𝜋𝜋𝑄𝑄 �𝑉𝑉′′[tc
2𝑚𝑚𝑤𝑤2 =

𝜋𝜋 ]Sin[2𝜋𝜋𝑄𝑄 ]𝑉𝑉′′[tc
2𝐴𝐴𝑚𝑚 ]𝑉𝑉[tc

Inside ]δH[tc ⩵ 𝑚𝑚𝜋𝜋 ]Sin[2𝜋𝜋𝑄𝑄 �𝑉𝑉′′[tc
2𝑤𝑤2 = 

𝑚𝑚𝜋𝜋 ]Sin[2𝜋𝜋𝑄𝑄 ]𝑉𝑉′′[𝑡𝑡𝑡𝑡
2𝐴𝐴 ]𝑉𝑉[𝑡𝑡𝑡𝑡

Outside vs inside results are 
identical in limit m→1

"A" has dimensions of 1/t^2

Q is a rescaling of initial phase q into the range [0,1]

The average of δH over Q is zero, 
but the r.m.s. is non zero.

Sqrt[ ]< δH[tc 2 >] ⩵ 𝜋𝜋 �𝑉𝑉′′[tc
4𝑤𝑤2

Valid for trajectories that do NOT experience 
the sudden capture at t=0, namely initial 
Hamiltonian values that satisfy H[0]>2V[T]/C0

w = small-amplitude 
synchrotron frequency

24



Now propagate δH inside the RF bucket as if it were any other H[t]

]δH[𝑇𝑇 ⩵
]𝑉𝑉[𝑇𝑇
]𝑉𝑉[tc

]δH[tc ]𝑉𝑉[tc →
]𝐻𝐻[𝑇𝑇 2

4 ]𝑉𝑉[𝑇𝑇
But we know that and 𝐻𝐻 𝑇𝑇 →

𝜋𝜋 𝐻𝐻 0 𝑉𝑉 𝑇𝑇
2

]δH[𝑇𝑇 ⩵

2 ]Sin[2𝜋𝜋𝑄𝑄 ]𝑉𝑉[𝑇𝑇
]𝐻𝐻[0 ]𝑉𝑉′′[tc

𝐴𝐴 ]𝑉𝑉[tc
RMS{ ]δH[𝑇𝑇 } ⩵

]𝑉𝑉[𝑇𝑇
]𝐻𝐻[0 ]𝑉𝑉′′[tc

2 𝐴𝐴 ]𝑉𝑉[tc

The scaling law for the 
point-spread function

Recapitulation: Ideally one value H[0] maps uniquely to a single H[T].
However, there is a point-spread function such that each H[0] maps to a narrow band H[T]±δH[T].
δH represents phase mixing due to imperfect adiabaticity.

If RMS[δH] is large, there will be noticeable r.m.s. (and 100% envelope) emittance growth.
Note: V”/V is largest at at t=T. V”/V increases as C0 is increased or T reduced or Np reduced. 
Tailoring V’’/V allows to adjust the emittance growth of the core versus the tails.
However, the dominant growth of the core will be due to the sudden turn-on, unless C0 can be made very large.
Final note: we know tc as a function of H[0]. Therefore, RMS{δH[T]} can be written as a function solely of H[0].

Question: But “how do the voltage laws differ?”
Answer: The r.m.s. values of δH[T] about H[T]

]𝐻𝐻[𝑇𝑇 + ]δH[𝑇𝑇 ⩵
]𝑉𝑉[𝑇𝑇
]𝑉𝑉[tc

]𝐻𝐻[tc + ]δH[tc

25



C0=50; V[0]=2%V[T]

Show[{l500, l200, l100, l40, l30, l501, 
l201, l101, l20, l41, l31, l502, l202, l102, 
l21, l42, l32, l503, l203, l103, l22, l10}]

Sudden turn-on

Show[{l22, l10, l43, l33, l504, l204, 
l104, l23, l11, l44, l34, l24, l12, l13}]

Sudden turn-on

L14 (Np=1,T=125) omitted as too large

C0=100; V[0]=1%V[T]

L14 (Np=1,T=125) omitted as too large

Show[{l504, l204, l33, l104, l10, l44, 
l23, l34, l11, l24, l12, l13}]

Show[{l500, l200, l100, l40, l501, l201, l30, 
l101, l41, l20, l502, l202, l31, l102, l42, l21, 
l503, l203, l32, l103, l43, l22}]

Sudden turn-on

Np=1, T=250

Np=1, T=500

Np=2, T=125
Np=1, T=1000

RMS

RMS

RMS

RMS

Np=50, T=125
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1
]𝐻𝐻[0

1
]𝐻𝐻[0

1
]𝐻𝐻[0



Show[{l500, l200, l100, l501, l201, 
l40, l101, l30, l502, l202, l41, l102, 
l31, l20, l503, l203, l42, l103}]

Show[{l32, l21, l504, l204, 
l43, l104, l33, l22, l44, l34}

{l23, l24}=(Np=2, T=250,125) omitted as too large
{l10, l11, l12, l13, l14}=(Np=2, T=2000, … 125) omitted

C0=500; V[0]=0.5%V[T]
Sudden turn-on

C0=1000; V[0]=0.1%V[T]

Show[{l500, l200, l100, l501, l201, l40, 
l101, l30, l502, l202, l41, l102, l31, l503, 
l20, l203, l42}

Show[{l103, l32, l504, l21, l204, l43, 
l104, l33, l22, l44}

{l34, l23, l24, l10, l11, l12, l13, l14} omitted as too large

Np=3, T=125

Np=4, T=125
Np=2, T=500

Np=4, T=125Np=2, T=500
Np=3, T=250
Np=10, T=125

Np=10, T=250

RMSRMS

RMSRMS

Np=3, T=500
Np=2, T=1000
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Conclusion from data plots and trending
Increasing C0 reduces core damage – reduces effect of sudden voltage turn-on
But to reduce body and tail damage, T must be increased and/or Np increased >2 

Strategy for Voltage Law Selection
Push C0 to technological limit (control of very small RF cavity voltage)
Take exponential law and shortest duration T consistent with adiabaticity parameter, say,  
ε(T)<0.02. Then progressively increase T as consistent with other machine operation 
constraints, and take Np consistent with ε(T). For example

C0 T Np V'[T]/V[T] index
22K 1000 Exp 0.01 E1
22K 1200 28 0.01 N28
22K 2000 8 0.01 N8
22K 4400 4 0.01 N4

Show[ e1, n28, n8, n4 ]
Blue=e1; gold=n28; green = n8; coral=n4

RMS{δH[T]} vs H[0]

Blue=e1; gold=n28; green = n8

Four times longer duration leads to 
four times smaller core damage 28



Back-to-back Comparison of Exponential law versus Iso-adiabatic (Np=2) for an extreme value of C0

Show[{e1, e2, e3, n2}]

Show[{de2, de3, dn2}]

Gold= de2; green= de3; 
coral= dn2

Np=2

Show[{de1, de2, de3, dn2}

Blue= de1; gold= de2; green= de3; coral= dn2

RMS{δH[T]} vs H[0]

Np=2

C0 T Np index
100K 2000 Exp E1
100K 1000 Exp E2
100K 500 Exp E3
100K 2000 2 N2
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BUNCH  LONGITUDINAL  PROFILE

Knowing the relationship between H[T] and H[0] facilitates the construction of the bunch longitudinal profile and 
bunch momentum spectrum from the momentum spectrum of the initial un-bunched coasting beam.

Momentum spectrum of un-bunched beam

]𝜌𝜌[𝑝𝑝 ⩵
2 1 − 𝑝𝑝2

pmax2
𝑛𝑛

�Gamma[3
2 + 𝑛𝑛

𝜋𝜋 pmax ]Gamma[1 + 𝑛𝑛
𝑝𝑝 →

2 H0
𝐴𝐴

Hamiltonian spectrum of un-bunched beam
transformation

]𝜌𝜌[H0 ⩵
1 − H0

H0max
𝑛𝑛

]Gamma[2 + 𝑛𝑛

H0max ]Gamma[1 + 𝑛𝑛

H0 →
HT2

a02
transformation

Hamiltonian spectrum of bunched beam

]𝜌𝜌[HT ⩵
2 1 − HT2

HTmax2
𝑛𝑛

�Gamma[3
2 + 𝑛𝑛

HTmax 𝜋𝜋 ]Gamma[1 + 𝑛𝑛

Note the implication: if ρ[p] is quadratic, 
then ρ[HT] is also quadratic. 

Bunch Shape is obtained by integrating over the product of 
Hamiltonian spectrum and Dwell function

]𝐻𝐻[𝑥𝑥, 𝑝𝑝, 𝑡𝑡 ⩵ 1 − �Cos[ ]𝑥𝑥[𝑡𝑡 +
]𝑝𝑝[𝑡𝑡 2

2
dwell ⩵

1
𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 ==

1
]𝑝𝑝[𝑡𝑡 ⩵

1
2 −1 + HT + ]Cos[𝑥𝑥

norm = 2Integrate[dwell, 𝑥𝑥, 0, ]ArcCos[1 − HT ]

dwell →
dwell
norm ⩵

1

2 2 −1 + HT + ]Cos[𝑥𝑥 �EllipticK[HT
2

Note : we can also define dwell function outside of the bucket

Also note: if the point-spread function is significant, then 
one must form the convolution of δH[T] with ρ[HT]30



BunchProfile[x] ==

1− ]Cos[𝑥𝑥

HTmax

1 − HT2

HTmax2
𝑛𝑛

�Gamma[3
2 + 𝑛𝑛

HTmax 2𝜋𝜋 −1 + HT + ]Cos[𝑥𝑥 �EllipticK[HT
2 ]Gamma[1 + 𝑛𝑛

dHT

1/4 Full RF bucket
Htmax →1

Full RF bucket
Htmax →2
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dwell ⩵
1

pdot
⩵−

1
�Sin[ ]𝑥𝑥[𝑡𝑡
⩵

1

1 − 1
4 2 − 2HT + 𝑝𝑝2 2

⩵
1

2HT − 𝑝𝑝2 1 − HT
2 + 𝑝𝑝2

4

BUNCH  MOMENTUM  SPECTRUM
Bunch spectrum is obtained by integrating over the product of Hamiltonian spectrum and Dwell function

norm ⩵ 2 �integrate[dwell, 𝑝𝑝, 0, 2 HT ⩵
�EllipticK[ HT

−2 + HT

1 − HT
2

⩵ �EllipticK[
HT
2 dwell →

dwell
norm

⩵
1

2HT − 𝑝𝑝2 1 − HT
2 + 𝑝𝑝2

4 �EllipticK[HT
2

Spectrum[p] = ]Integrate[RhoHT.dwell, HT, ⁄𝑝𝑝^2 2 , HTmax

Full RF bucket: HTmax →21/4 RF bucket: HTmax →1

]EllipticK[𝑚𝑚 →
𝜋𝜋

2 1 −𝑚𝑚 ⁄1 4
Incidentally, an extremely 
good approximation 32



CONCLUSIONS
 Thus ends 63 years without a detailed, useful, predictive theory of longitudinal adiabatic capture.
 The relationship between H[T] and H[0] is predictable: almost a universal function independent of V[t], 

H[T] ~Sqrt[H[0]], provided  adiabaticity parameter ε=V”[T]/V’[T]/Sqrt[A V[T]] is few % or less.
 Of course, there are refinements to this theory (e.g. better estimation of the ^(1/2) power law and constants of 

proportionality) that lead to more accurate predictions for H[t] – but space/time prevents their presentation here.

 The point-spread function δH[T] quantifies and predicts the effect of non-adiabatic processes
 sudden voltage turn-on which affect core, and separatrix crossing which affects tails.

 Lilliequist & Symon (1959) replaced linear voltage law by the iso-adiabatic voltage law (Np=2); an 
improvement because linear voltage law is potentially very damaging to the beam core if T too small.
 But, ironically, sudden turn-on can be major source of δH[T] unless C0 very large

 However, the power law family with index Np>2 can out-perform Np=2; choose Np & C0 to optimize 
adiabaticity for given T.

 The fastest adiabatic capture is given by the exponential voltage law.
 The universal relationship between H[T] and H[0] facilitates prediction of bunch profile and spectrum.
 Synchrotrons (& storage rings) around the world that do adiabatic capture (or debunching) should 

revisit this topic – there are improvements to be made in beam quality and/or faster processes.
33
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CAVEATS
 Conjecture (see slide #23) needs a proof (or refutation)

 See IPAC 2023
 We have compared members of the adiabatic family (as a function of Np & C0) against one another
 But we have not made a direct comparison with other voltage laws such that V[t=0] =0, such as linear 

V[t]=V(t/T) or quadratic V[t]=V(t/T)2 . These do not suffer the sudden turn on, but do suffer from ε>>1
or ε>1 non-adiabaticity around t=0  -- which is core damaging
 The theory presented here does not predict their behavior of H[T,H[0]] or δH[T,H[0]] as H[0]->0

 Direct comparison of the adiabatic family against linear & quadratic laws requires either to reduce the 
initial voltage step V[T]/C0 from the former or introduce it into the latter.
 This is scope for further study
 See IPAC 2023
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