
Minimum Emittance Growth During RF Phase Sweep

Previously, FFA2021, we answered the questions:
 when does a particle bunch in longitudinal phase space follow movement of the RF phase?
 what is the emittance growth for linear RF phase sweep?

Here, IPAC2022 and FFA2022, we answer two questions:
 How to calculate emittance growth for arbitrary time law of phase sweep, f(t)?

 We use value of the Hamiltonian as surrogate for emittance
 We use a phenomenological Hamiltonian for the particle dynamics

 What time law(s) of rf phase variation generates absolute minimum emittance growth?
 This is a brachistochrone-type problem: minimize an integral (subject to constraints) with 

respect to choice of path

Shane Koscielniak (TRIUMF Emeritus & University of Victoria adjunct Prof.) 

The brachistochrone is the curve that minimizes the time of flight of a bead sliding on a frictionless wire 
under the force gravity. It was the motivating problem for the calculus of variations, wherein an integral 
is minimized w.r.t. the form of some unknown function.
It is also the inspiration for thinking about the optimum phase slip f(t) in an abstract  way.
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At FFA20
 David Kelliher’s presented an experimental study of emittance growth during the sweep of 

synchronous acceleration phase; and attempts to minimize the growth.
 I pointed out that there are two processes: (1) variation of the confining potential; and (2) variation 

of the centre of focusing. 
 I noted that there is a large literature concerning the adiabaticity of (1); but no literature 

investigating the adiabaticity of (2).
 I posed the question “when does a particle beam follow a moving RF phase?”
 Stephen Brooks made the insightful comment this is equivalent to the question “when does a 

pendulum follow motion of its pivot and come to rest?”

RECAPITULATION

At FFA21
 I presented start-to-end matching conditions for the bunch centroid

 The RF phase sweep must be completed in an integer number of synchrotron oscillations
 For some RF sweep laws, f(t), matching conditions cannot be found unless there is an initial 

(or terminal) fast RF phase jump
 I presented analytic calculation of emittance growth for linear RF phase sweep (in terms of Jacobi 

elliptic functions) and confirmed by numerical simulation
 I noted you cannot perform this calculation for arbitrary f(t) because there is no equivalent of the 

particular integral and complementary function for the biased pendulum oscillator.
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Stationary rf bucket

Transition time T

f=f0, t<0

f=0, t>T

Stationary rf bucket t=T
t=0

f=f(t)

MISSION STATEMENT

We shall find 3 things:
1) Matching conditions between t=0 and t=T that bring the centroid 

coincident with f(t) at those times.
2) Emittance growth of the ensemble with respect to the centroid
3) RF phase-sweep law f(t) that generates absolute minimum emittance 

growth for a given number of oscillations of the bunch centroid.
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)𝒙𝒙′(𝒕𝒕 = )𝒑𝒑( 𝒕𝒕 )𝒑𝒑′(𝒕𝒕 = −𝝎𝝎𝟐𝟐 �𝐬𝐬𝐬𝐬𝐬𝐬( )𝒇𝒇( 𝒕𝒕 + )𝒙𝒙( 𝒕𝒕

𝚫𝚫𝐇𝐇 = 𝝎𝝎𝟐𝟐 �
𝟎𝟎

𝑻𝑻
)𝒇𝒇′(𝒕𝒕 �𝐬𝐬𝐬𝐬𝐬𝐬( )𝒇𝒇( 𝒕𝒕 + )𝒙𝒙( 𝒕𝒕 𝐝𝐝𝒕𝒕

Original Equations

Transformations )𝒙𝒙( 𝒕𝒕 = )𝐱𝐱𝟐𝟐( 𝒕𝒕 − )𝒇𝒇( 𝒕𝒕 )𝒑𝒑( 𝒕𝒕 = )𝐩𝐩𝟐𝟐( 𝒕𝒕 − )𝒈𝒈( 𝒕𝒕

)𝒈𝒈( 𝒕𝒕 = )𝒇𝒇′(𝒕𝒕 momentum offset g(t) generates phase slip f(t)

Transformed Equations )𝒙𝒙𝟐𝟐′(𝒕𝒕 = )𝐩𝐩𝟐𝟐( 𝒕𝒕 )𝒑𝒑𝟐𝟐′(𝒕𝒕 = )𝒇𝒇′′(𝒕𝒕 − 𝝎𝝎𝟐𝟐 �𝐬𝐬𝐬𝐬𝐬𝐬( )𝐱𝐱𝟐𝟐( 𝒕𝒕

𝚫𝚫𝐇𝐇 = 𝝎𝝎𝟐𝟐 �
𝟎𝟎

𝑻𝑻
)𝒈𝒈( 𝒕𝒕 �𝐬𝐬𝐬𝐬𝐬𝐬( )𝐱𝐱𝟐𝟐( 𝒕𝒕 𝐝𝐝𝒕𝒕

𝜟𝜟𝒙𝒙𝟐𝟐𝒄𝒄 = ∫𝟎𝟎
𝑻𝑻 𝒑𝒑𝟐𝟐𝒄𝒄 𝒅𝒅𝒕𝒕 = 𝟎𝟎 & 𝜟𝜟𝒑𝒑𝟐𝟐𝒄𝒄 = −𝝎𝝎𝟐𝟐 ∫𝟎𝟎

𝑻𝑻 𝒙𝒙𝟐𝟐𝒄𝒄 𝒅𝒅𝒕𝒕 = 𝟎𝟎

Centroid Matching Conditions

The primary constraint is that the sweep be completed in an integer number, n, of synchrotron oscillations of the centroid. 
Nevertheless, there is typically a small residual oscillation because the momentum offset caused by the RF sweep does not 
accrue enough phase slip of the bunch to catch up to the RF phase. The residual may either be accepted, or zeroed by 
making a “fast” RF-phase jump at start or end of the sweep. 4



SHO Matching conditions for centroid when f(t)= (f0/2) [1+cos(πt/T )]

x(t)

-f(t)p(t)

Centroid motion during and after phase slip. 
Green curve: RF phase, -f. Blue curve: position. Gold curve: centroid momentum. Orange curve: 
momentum offset required to achieve phase slip, -g. Time in units of synchrotron oscillation period. 

Left graph: ν = 1 
Transition time is 
1 synchrotron 
period 

Right graph: ν = 3
Transition time is 
3 synchrotron 
periods

x(t<0)=f0
x(t=0)=(4/3)f0

x(t<0)=f0
x(t=0)=(36/35)f0

p(0)=p(T)=0 when T=2πν/ω.  This implies 

Which is contrary to assumption x(0)=f0 ; and requires a phase jump rf-gymnastic

Provided ν ≥ 2 and phase jump at t=0 is accomplished, centroid oscillation about f(t) is smaller for     
½-sinuosoid than for linear rf-ramp. For pendulum oscillator this results in smaller emittance growth.5



Example Matching conditions for beam centroid

Linear RF-phase ramp

Due to f(t)=(1-t/T)f0 centroid moves from (x,p)=(0,0) into lower left quadrant (-x,-p)

Hamiltonian = H= (1/2)A p^2+V[1-Cos[x]] 𝑢𝑢 ⩵ 𝑡𝑡𝜔𝜔 Jacobi 𝑚𝑚 ⩵ 𝑘𝑘2

x2 = −2 �ArcSin[ 𝑚𝑚 ]JacobiSN[𝑢𝑢, 𝑚𝑚 p2 = 2 𝑚𝑚𝜔𝜔 ]JacobiCN[𝑢𝑢, 𝑚𝑚

x[T] == 0 implies x2[T] ==0 because f[T]==0 p[T] == 0 implies p2[T] == -Poffset =f0/T

x[0] == -f0 implies x2[0] == 0 because f[0] == f0 p[0] == 0 implies p2[0] == - Poffset

For consistency, T=n 4K[m]/ω where n = # synchrotron oscillations and K= elliptic K

𝜏𝜏 ⩵
4 ]EllipticK[𝑚𝑚

𝜔𝜔Period is

2 𝑚𝑚𝜔𝜔 ⩵
f0𝜔𝜔

4𝑛𝑛 ]EllipticK[𝑚𝑚 K ⩵
𝜋𝜋
2

+
𝑚𝑚𝜋𝜋

8
+

9𝑚𝑚2𝜋𝜋
128

+ ⋯ To first order 𝑚𝑚 ⩵
f0

4𝑛𝑛𝜋𝜋

½=cycle sine RF-phase rampBi-quadratic RF-phase ramp

𝑚𝑚 ⩵ �Sin[
3f0

8𝑛𝑛2 ]EllipticK[𝑚𝑚 2 𝑚𝑚 ⩵ �Sin[
f0𝜋𝜋2

4 𝜋𝜋2 − 16𝑛𝑛2 ]EllipticK[𝑚𝑚 2
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The emittance is proportional to the Hamiltonian of the bounding trajectory in phase space.
Emittance growth is reduced by minimizing the change in Hamiltonian between the bounding
trajectory and the bunch centroid (∆H - ∆Hc)

Linear RF phase sweep 
Important, special case. Use it to bench mark numerical calculations and/or other analysis
Simple because f”=0, g=constant; and no phase jump, so no jump in Hamiltonian 

Let sin(x2(𝑢𝑢)/2)= 𝑘𝑘sn (𝑢𝑢+u0;𝑚𝑚) Hamiltonian value is H=2ω2m Jacobi amplitude parameter m=k2

Define the change Δcn= cn(U+u0;m) - cn(u0;m). 
U=ωT is the accrued phase. Δcn describes a dipole oscillation. 
The normalized fractional change of Hamiltonian for the
general trajectory is: (ΔH/H) (2π/Δf) = -Δcn/(n k). 

ΔH of the bunch is minimized when we set duration U=2π n. 
u0(m) is chosen to find the largest ΔH on the bounding 
trajectory. Note: for the linear ramp and short bunches, ΔH
does not fall as 1/n because the de-phasing (between different 
oscillation amplitudes) is approximately proportional to n

Δcn(u0,U,m) versus initial angle u0 
and radius k2 = mMore details at FFA2021 7



FFA2021: technical difficulties

]p2′[𝑡𝑡 ⩵ V �Sin[ ]x2[𝑡𝑡 −
]𝑓𝑓′′[𝑡𝑡

𝐴𝐴
, ]x2′[𝑡𝑡 ⩵ −𝐴𝐴 ]p2[𝑡𝑡

We take a few moments to explore why “calculating the emittance increase analytically via changes 
in the Hamiltonian” is so difficult when f”≠ 0.

For time-varying rf phase sweep, we found particle coordinates evolve according to

 There are no “closed form” solutions (like sn and cd) for a biased pendulum.
 cd and sn are not a suitable starting point for perturbative or iterative expansion – because they have 

the wrong symmetries.
 There is no analog for constructing the particular integrals (PI); and if there were, we would find a 

different PI for every value of elliptic parameter m.

FFFA2021: Good Ideas Are Needed and Welcome…
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IPAC2022: phenomenological Hamiltonian

]𝐻𝐻[𝑎𝑎, 𝑡𝑡 ⩵
]𝑝𝑝[𝑡𝑡 2

2
+

1
2

]𝑓𝑓[𝑡𝑡 + ]𝑥𝑥[𝑡𝑡 2 ]𝜔𝜔[𝑎𝑎 2 a harmonic oscillator with an artificial frequency spread 

]𝑥𝑥′[𝑡𝑡 ⩵ ]𝑝𝑝[𝑡𝑡 ]𝑝𝑝′[𝑡𝑡 ⩵ − ]𝑓𝑓[𝑡𝑡 + ]𝑥𝑥[𝑡𝑡 ]𝜔𝜔[𝑎𝑎 2 ]𝜔𝜔[𝑎𝑎 ⩵
𝜋𝜋 ]𝜔𝜔[0

2 �EllipticK[ �Sin[𝑎𝑎
2

2
𝑎𝑎 ⩵ 0, Pi

a = initial amplitude

)𝜔𝜔( 𝑎𝑎 = pendulum oscillator dispersion ]𝜔𝜔[𝜋𝜋 ⩵ 0

Suppose f[t]=0.

]𝐻𝐻[𝑎𝑎 ⩵
1
2

𝑎𝑎2 ]𝜔𝜔[𝑎𝑎 2

Definitely this Hamiltonian has “issues”.
When we come to form ΔH/H, H[a] will 
have to be “regulated” to avoid division 
by zero squared.
The regulated form for the initial
Hamiltonian is

]𝐻𝐻[𝑎𝑎 →
1
2

𝑎𝑎2 ]𝜔𝜔[0 ]𝜔𝜔[𝑎𝑎
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𝚫𝚫𝐇𝐇 = )𝝎𝝎( 𝒂𝒂 𝟐𝟐 �
𝟎𝟎

𝑻𝑻
)𝒈𝒈( 𝒕𝒕 )𝐱𝐱𝟐𝟐( 𝒕𝒕 𝐝𝐝𝒕𝒕

Employ same transformations 
as before

)𝒙𝒙𝟐𝟐′(𝒕𝒕 = )𝐩𝐩𝟐𝟐( 𝒕𝒕 )𝒑𝒑𝟐𝟐′(𝒕𝒕 = )𝒇𝒇′′(𝒕𝒕 − 𝝎𝝎𝟐𝟐 �𝐬𝐬𝐬𝐬𝐬𝐬( )𝐱𝐱𝟐𝟐( 𝒕𝒕

)𝒙𝒙( 𝒕𝒕 = )𝐱𝐱𝟐𝟐( 𝒕𝒕 − )𝒇𝒇( 𝒕𝒕 )𝒑𝒑( 𝒕𝒕 = )𝐩𝐩𝟐𝟐( 𝒕𝒕 − )𝒈𝒈( 𝒕𝒕

)𝒈𝒈( 𝒕𝒕 = )𝒇𝒇′(𝒕𝒕 momentum offset g(t) generates phase slip f(t)

Transformed Equations

Equations can be solved for x2 as particular integral (PI) & complementary function (CF);
and ∆H calculated analytically for arbitrary f(t).
The PI is proportional to 1/ω[a], because a weaker restoring force results in a larger amplitude x2.
Hence ΔH is proportional to ω[a]. Therefore, taking initial ]𝐻𝐻[𝑎𝑎 → 1

2
𝑎𝑎2 ]𝜔𝜔[0 ]𝜔𝜔[𝑎𝑎 will regulate ΔH/H.

𝜟𝜟𝒙𝒙𝟐𝟐𝒄𝒄 = ∫𝟎𝟎
𝑻𝑻 𝒑𝒑𝟐𝟐𝒄𝒄 𝒅𝒅𝒕𝒕 = 𝟎𝟎 & 𝜟𝜟𝒑𝒑𝟐𝟐𝒄𝒄 = −𝝎𝝎[𝟎𝟎]𝟐𝟐 ∫𝟎𝟎

𝑻𝑻 𝒙𝒙𝟐𝟐𝒄𝒄 𝒅𝒅𝒕𝒕 = 𝟎𝟎
Centroid Matching
Conditions

Matching leads to integer number n of synchrotron oscillations; and may require a fast phase jump.
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Absolute Minimum Emittance Growth
 Ideally, the difference (ΔH - ΔHc) would be minimized with respect to the choice of the phase sweep, 

f(t), according to the calculus of variations, in the manner of the brachistochrone problem. 
 However, we have not found a suitable variational principle; and so have resorted to trial and error 

in the choice of f(t). 
 The trial functions are: (1) linear ramp, (2) ½-cycle sinusoid, (3) bi-quadratic, (4) dual-sinusoid; (5) 

cubic; and (6) linear plus sinusoid – all ramped between t=0 and t=T.
 The procedure is: 1st compute centroid matching conditions; 2nd compute (∆H - ∆Hc) for the 

trajectories as perturbed by the sweep f(t). Repeat for variety of phase ramps.
 Here “compute” does not mean “numerical computation”, rather it means compute analytic 

formulae that can be evaluated later
 Note, a fast phase jump is the cause of a jump in H, but jump values are cancelled out when the 

difference (ΔH - ΔHc) is formed.

We start by benchmarking numerical particle tracking and the phenomenological Hamiltonian 
against the known exact case Jacobian elliptic functions driven by a linear RF phase ramp
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Benchmarking – Linear RF phase ramp

Zeros are due to co-periodicity  

n=1, blue; n=2, gold; n=3, olive; n=4 synchrotron oscillations coral

Theory – from phenomenological  
Hamiltonian

Theoretical – from Jacobi Elliptic 
Functions

Trajectories 
from X=0 

Trajectories 
from P=0 
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Benchmarking – Linear RF phase ramp

Experimental – from Particle Tracking

Example Particle Tracking

Trajectories 
from P=0 

Trajectories 
from X=0 

n=1, ∆f=1. red = centroid

Trajectories 
from P=0 

Trajectories 
from X=0 
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Conclude: "linear" is best for n = 1. 
Also: if insist linear ramp is used and 
amplitudes <0.5 radian, then no point using n>1
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blue= linear ramp; orange= dual-sinusoid; magenta= ½-cycle sinusoid; green= bi–quadratic; red= cubic ramp 

Conclude: "bi-quadratic" is best for n = 2 
and amplitudes < 2 radian 14
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Conclude: “bi-quadratic” is best for n = 4 
and amplitudes < 1.5 radianConclude: "1/2-cycle sine" is best for n = 3

blue= linear ramp; orange= dual-sinusoid; magenta= ½-cycle sinusoid; green= bi–quadratic; red= cubic ramp 
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We could stop here – But the expressions for x2 and p2 developed in terms of PI and CF for the 
phenomenological Hamiltonian allow to compute additional quantities, and also power series expansions 
that improve our insight as to why one phase ramp law is better than another.

Δx2 − Δx2𝑐𝑐 ⩵ �
0

𝑇𝑇
]p2[𝑡𝑡 − ]p2𝑐𝑐[𝑡𝑡 d𝑡𝑡

Δp2 − Δp2𝑐𝑐 ⩵ �
0

𝑇𝑇
]x2[𝑡𝑡 ]𝜔𝜔[𝑎𝑎 2 − ]𝜔𝜔[0 2 ]x2𝑐𝑐[𝑡𝑡 d𝑡𝑡

ΔH2 − ΔH2𝑐𝑐 ⩵ �
0

𝑇𝑇
]x2[𝑡𝑡 ]𝜔𝜔[𝑎𝑎 2 − ]𝜔𝜔[0 2 ]x2𝑐𝑐[𝑡𝑡 ]𝑓𝑓′[𝑡𝑡 d𝑡𝑡

 All 3 quantities are measures of the effect of 
dephasing due to synchrotron frequency spread.

 All 3 quantities are identically zero if there is no 
oscillation frequency spread.

An example: the linear RF phase ramp f(t)=Δf/T
Δx2𝑐𝑐 & Δp2𝑐𝑐 & ΔH2𝑐𝑐 are all zero.

𝑇𝑇 ]𝜔𝜔[0 → 2𝑛𝑛𝜋𝜋 𝑇𝑇 ]𝜔𝜔[𝑎𝑎 → 𝑛𝑛 2𝜋𝜋 + 𝜓𝜓 Ψ is the increment in the phase-advance due to frequency spread

𝜓𝜓 < 0 if ]𝜔𝜔[𝑎𝑎 < ]𝜔𝜔[0
Let

Δx2 ⩵ −𝑎𝑎 ]Cos[𝜙𝜙 + 𝑎𝑎 ]Cos[𝜙𝜙 + 𝑛𝑛𝜓𝜓 +
Δf ]Sin[𝑛𝑛𝜓𝜓
𝑛𝑛 2𝜋𝜋 + 𝜓𝜓

Δp2 ⩵ Δf − Δf ]Cos[𝑛𝑛𝜓𝜓 − 𝑎𝑎𝑛𝑛 2𝜋𝜋 + 𝜓𝜓 ]Sin[𝜙𝜙 + 𝑎𝑎𝑛𝑛 2𝜋𝜋 + 𝜓𝜓 ]Sin[𝜙𝜙 + 𝑛𝑛𝜓𝜓 ]𝜔𝜔[0 /(2𝑛𝑛𝜋𝜋)

ΔH2 ⩵ Δf Δf − Δf ]Cos[𝑛𝑛𝜓𝜓 − 𝑎𝑎𝑛𝑛 2𝜋𝜋 + 𝜓𝜓 ]Sin[𝜙𝜙 + 𝑎𝑎𝑛𝑛 2𝜋𝜋 + 𝜓𝜓 ]Sin[𝜙𝜙 + 𝑛𝑛𝜓𝜓 ]𝜔𝜔[0 2 /(4𝑛𝑛2𝜋𝜋2)

φ is the initial oscillation phase If ψ → 0, then Δx2 & Δp2 & ΔH2 are all zero.
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Suppose we know ω[a] and its derivatives at a=0, then ψ becomes a Taylor series in amplitude “a” 

𝜓𝜓 ⩵
2𝜋𝜋 − ]𝜔𝜔[0 + ]𝜔𝜔[𝑎𝑎

]𝜔𝜔[0

𝜓𝜓 →
𝑎𝑎2𝜋𝜋 ]𝜔𝜔′′[0

𝜔𝜔
+

𝑎𝑎4𝜋𝜋 �𝜔𝜔 4 [0
12𝜔𝜔

+ …

Hence the power series expansions

Δx2 ⩵
𝑎𝑎2Δf ]𝜔𝜔′′[0

2𝜔𝜔
−

𝑎𝑎3𝑛𝑛𝜋𝜋 ]Sin[𝜙𝜙 ]𝜔𝜔′′[0
𝜔𝜔

+
𝑎𝑎4Δf −6 ]𝜔𝜔′′[0 2 + 𝜔𝜔 �𝜔𝜔 4 [0

24𝜔𝜔2

Δp2 ⩵ 𝑎𝑎3𝑛𝑛𝜋𝜋 ]Cos[𝜙𝜙 ]𝜔𝜔′′[0 +
𝑎𝑎4𝑛𝑛𝜋𝜋Δf ]𝜔𝜔′′[0 2

4𝜔𝜔

ΔH2 ⩵
1
2

𝑎𝑎3Δf𝜔𝜔 ]Cos[𝜙𝜙 ]𝜔𝜔′′[0 +
1
8

𝑎𝑎4Δf 2 ]𝜔𝜔′′[0 2

At this order, ΔH appears independent of duration. The 1/T in (Δf/T) cancels against the phase advance 
which is proportional to T. This is correct for small amplitudes, and indicates that for small amplitudes 
there is no reason to use n>1 if you insist to use a linear ramp. 
Numerical simulations confirm this to be correct.
For the linear phase ramp, the Δf/T reduction of ΔH is seen in the LARGE amplitudes.

Because ω is a function of a2, the odd derivatives are zero
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Power series expansions for Δx2, Δp2 & ΔH2 can be obtained for all six RF phase sweep laws 
(and many others). It is particularly instructive to do so for the bi-quadratic ramp

Bi-quadratic ramp is defined piecewise before and after t=T/2; 
and is continuous in value and derivative across t=T/2

0 < 𝑡𝑡 <
𝑇𝑇
2

→ ]𝑓𝑓[𝑡𝑡 ⩵
2𝑡𝑡2Δf

𝑇𝑇2 + ]𝑓𝑓[0 𝑇𝑇 > 𝑡𝑡 >
𝑇𝑇
2

→ ]𝑓𝑓[𝑡𝑡 ⩵ −
2𝑡𝑡2Δf

𝑇𝑇2 +
4𝑡𝑡Δf

𝑇𝑇
+ 2 ]𝑓𝑓[0 − ]𝑓𝑓[𝑇𝑇

The bi-quadratic ramp achieves the smallest 
peak value of f”[t]
Remember, it is f” which drives the particular 
integral

)𝒙𝒙𝟐𝟐′(𝒕𝒕 = )𝐩𝐩𝟐𝟐( 𝒕𝒕

)𝒑𝒑𝟐𝟐′(𝒕𝒕 = )𝒇𝒇′′(𝒕𝒕 − 𝝎𝝎𝟐𝟐 �𝐬𝐬𝐬𝐬𝐬𝐬( )𝐱𝐱𝟐𝟐( 𝒕𝒕

No fast-phase-jump is required if n is even.

So we might expect the bi-quadratic ramp to 
launch the smallest synchrotron oscillations
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Blue = x, Gold = p, Green = -phase ramp = -f(t),
Orange = momentum offset = g(t)

Bi-quadratic ramp 

Trajectories 
from P=0 

n=2, ∆f=1. red = centroid
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Power series expansions for Δx2, Δp2 & ΔH2 for bi-quadratic ramp and integer n even

Δx2 ⩵ −
𝑎𝑎3𝑛𝑛𝜋𝜋 ]Sin[𝜙𝜙 ]𝜔𝜔′′[0

𝜔𝜔
+

𝑎𝑎4Δf ]𝜔𝜔′′[0 2

4𝜔𝜔2 −
𝑎𝑎5𝑛𝑛𝜋𝜋 6𝑛𝑛𝜋𝜋 ]Cos[𝜙𝜙 ]𝜔𝜔′′[0 2 + 𝜔𝜔 ]Sin[𝜙𝜙 �𝜔𝜔 4 [0

12𝜔𝜔2

Δp2 ⩵ 𝑎𝑎3𝑛𝑛𝜋𝜋 ]Cos[𝜙𝜙 ]𝜔𝜔′′[0 +
𝑎𝑎5𝑛𝑛𝜋𝜋 6 ]Cos[𝜙𝜙 − 𝑛𝑛𝜋𝜋 ]Sin[𝜙𝜙 ]𝜔𝜔′′[0 2 + 𝜔𝜔 ]Cos[𝜙𝜙 �𝜔𝜔 4 [0

12𝜔𝜔

ΔH2 ⩵
1
4

𝑎𝑎5Δf ]Cos[𝜙𝜙 ]𝜔𝜔′′[0 2 +
1

24
𝑎𝑎7Δf ]𝜔𝜔′′[0 −

3𝑛𝑛𝜋𝜋 ]Sin[𝜙𝜙 ]𝜔𝜔′′[0 2

𝜔𝜔
+ ]Cos[𝜙𝜙 �𝜔𝜔 4 [0

The high power law a^5 in ΔH implies the change in Hamiltonian, and hence emittance 
increase,  grows very slowly for amplitude a <1
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Here we answered two questions:
 How to calculate longitudinal emittance growth for arbitrary time law of RF phase ramp?

 Use the phenomenological Hamiltonian
 Predictions are in good agreement with particle tracking, particularly the ordering of the 

“best” ramp versus number of synchrotron oscillations 
 What time law(s) of RF phase variation generates minimum growth of the bounding 

emittance?
 The choice of “best ramp” depends on the maximum oscillation amplitudes in the bunch
 It is probable that for n=1 the linear ramp generates the absolute minimum
 It is probable that for n=2 & amplitude <2 radian, the bi-quadratic ramp generates the 

absolute minimum

If the figure of merit is the r.m.s. emittance 
growth, then one must form the weighted average 
over the distribution F[H] within the bunch.
This will skew choice of “best” toward small 
amplitudes

�
0

H0max
ΔH ]𝐹𝐹[𝐻𝐻

𝐻𝐻
d𝐻𝐻

CONCLUSIONS
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The function x=sin(ωt) is that which ω2x is the same as taking the 2nd derivative d2x/dt2

The function x=2Arcsin[k.JacobiElliptic(ωt,k2)] is that which ω2sin(x) is the same as taking the 2nd derivative

Note it is a property of all periodic functions that if x(t) is a trajectory solution, then the loop integrals
over one cycle of motion of ALL derivatives (x’, x”, etc) is identically zero.
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