

C. Rogers

Science & Technology Facilities Council

Scaling FFA field

- k is fixed by the lattice requirements
- Strong focusing achieved by flipping the field
 - Require $B_z \rightarrow -B_z$

Introduction (2)

- Horizontal scaling FFA is uniquely defined by 3 parameters and one function
 - Field index k
 - Radius r₀
 - Spiral Angle
 - $B_0(\phi)$ } Can vary DF ratio (but that's all)

Fixed by construction

- To make an FFA
 - Build a magnet
 - Shim
 - 🛚 Pray 🔪
- This is a problem at high intensity
 - Would like to choose working point
 - E.g. would like to explore tune working point
 - \rightarrow Invent a magnet having variable k

Introduction (3)

- Horizontal FFAs are over-constrained
 - i.e. not enough free parameters
- E.g. magnet aperture **AND** tune are determined by k
 - If we want a small horizontal aperture we have to vary k → messes up the tune
- Consequences:
 - We end up with magnets needing huge horizontal aperture
 - We end up with an orbit that moves across the aperture
 - Equipment needs massive aperture sometimes not possible
 - We end up with half of our magnets bending the beam in the wrong direction!!
 - 1 for the price of 3

Example: injection

- Example
 - For high intensity protons, we would like to choose the working point
 - Need 2 parameters to choose horizontal and vertical tune
 - k
 - DF ratio
 - If we can vary k, then we move the injection point
 - Need to have extremely wide aperture kickers

Why FFAs?

- Advantage of FFAs
 - No ramping magnets → power hungry, expensive
 - Transverse hardware is largely independent of RF
 - No need to set RF according to magnet cycle
 - Longitudinal gymnastics is possible e.g. adiabatic capture, stacking
- Can we borrow from synchrotrons?
- Time-dependent insertion
 - Pulsed dipoles to suppress dispersion
 - Pulsed quadrupoles to adjust tune
 - Injection, RF and other hardware
- Bending done in time-independent fixed field magnets
 - Scale correctly with momentum
- Hybrid FFA-synchrotron = **Ffynchrotron**

Schematic

- Schematic
 - Q: pulsed quadrupoles (and other hardware)
 - Q(t) scaled with momentum to adjust working point
 - B: pulsed dipole
 - Choose B(t) to bring orbit into FFA arc
 - (Check: what happens to Dispersion?)
 - FFA arc: scaling FFA arc

- First pass
 - Weak focusing
 - F magnet only
 - Pulsed dipoles cancel the momentum spread in straight sections

- Horizontal tune excursion is quite limited
- Vertical tune excursion is rather large

Constant Tunes

- We can solve for Q analytically to give constant tunes
 - Assume thin lens approximation
 - Plot focal length of the lens.

Higher k

- Can use a higher k-value
 - We can correct tune in the quads
 - Tune independent of e.g. closed orbit

 B_{z} [T]

Application to muon collider

- Muon collider acceleration is similar to this concept
 - But use dipoles (FFA with k = 0!)
- Pulsed dipoles are big challenge
 - Pulse length needs to be very short to fight muon decay
 - Powering is tricky
 - Stored energy, eddy currents etc
 - Synchronisation with RF
- FFAs are disfavoured due to
 - reverse bends
 - Beam moving across RF/etc
- Plan: apply the concept to MuC lattice

Conclusions

FFAs are overconstrained

- Many efforts in recent years dedicated to breaking the scaling law, while maintaining constant tune
- Can use pulsed magnets to unconstrain the lattice
 - Hopefully pulsed dipoles become not so demanding
 - Pulsed quadrupoles can be used for tuning/optimisation
- Hybrid FFA-synchrotron
 - Ffynchrotron
- Can make
 - e.g. injection easier in proton Ffynchrotron
 - e.g. relax constraints on dipoles in muon Ffynchrotron