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Introduction

• High energy and high intensity hadron accelerators 

• Production of intense secondary particles:neutron, muon, unstable nuclei 

• Particle physics, Nuclear physics, solid-state physics, etc.: JPARC, ISIS, SNS, 
ESS, RIBF, FRIB 

• Beam power  ~ 1MW    

• Atomic energy production 

• Nuclear transmutation of radioactive wastes:  ADS 

• Nuclear fusion: Muon catalyzed fusion, Neutral beam injection for plasma 
heating 

• Beam power ~ >10MW 

• New scheme : Phase-free beam acceleration with ICZC FFA 

• ICZC FFA : IsoChronous and Zero-Chromatic Fixed Field Accelerator
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Phase free (PF) acceleration
• One of the most difficult issues to reach a beam power of  

>10-100 MW is how to control a space-charge force. 

• In RF accelerators, particles are longitudinally localized/
bunching around a certain RF phase, so that the 
longitudinal defocusing forces could induce various 
beam instabilities and beam losses.  

• An ideal scheme is a DC beam acceleration. → No 
bunched beam. 

• But, no way in electro-static acceleration. 

• Is it possible of DC beam acceleration with RF field? 

• Rotating (circularly polarized)  RF field   

• → Phase-free(PF) cyclotron resonance 
acceleration with rotating RF field  

• However, ωc ∝ 1/γ, so that different frequency multi-RF 
cavities are required to accelerate the particles in high 
energy. → ‘Pulsed beam’ with the m/Δf interval for 
phase matching is inevitable. 

• If B increases with γ to keep ωc constant, a defocusing 
force arises.→Mirror effect 

• PF acceleration needs  ICZC optics (‘IsoChronous’ and 
‘Zero Chromatic’ ) Multi-cavity proton accelerator

 J.L.Hirshfield et al.,PRLST,5,081301(2002).
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ICZC optics for PF acceleration
• Requirements of beam optics and dynamics in the phase-free 

acceleration 

• (1) Isochronous acceleration 

• Need the constant RF frequency in acceleration, so that any phase can join the 
acceleration. 

• (2) Zero-chromatic optics 

• Keep the betatron tunes constant during acceleration to avoid the resonance 
crossing while B is proportional to γ in isochronous acceleration. 

• Magnetic field configuration in spiral sector focusing that satisfies these two 
conditions has already been studied and obtained by S. Brooks: IPAC2014.
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Requirements of ICZC optics 
-weak focusing- 

(Based on study by Stephen Brooks)

• Phase-free acceleration by rotating RF field requires isochronous and zero-
chromatic optics. 

• (1) Isochronous criteria 

• To satisfy this condition, 

• Orbit excursion: proportional to velocity 

• Magnetic field strength: proportional to energy 

• Thus, the orbit excursion and the magnetic field strength are specified by an angle 𝜓 as 
follows.
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• (2) Zero chromaticity 

• Weak focusing : strong focusing (spiral) → i.e., Brooks 

• Linearized betatron equations in dipole and rotating(angle=θ) Q fields are, 

• Zero chromaticity 

• Isochronous condition: r/B term of the field index can be expressed with a 
superposition of r-dependent and B-dependent terms as follows. 

• Field and closed orbit

d2

d✓2


x
y

�
+


1
0

�
+RNR�1

� 
x
y

�
= 0

n = � r

By

✓
@By

@x

◆
= � r

By

✓
@By

@r

◆
N =


�n 0
0 n

�
R =


cos ✓ sin ✓
� sin ✓ cos ✓

�

@n

@p
= 0. ! n = const.

 = 2✓.NR = RNR�1 =


�n cos n sin 
n sin n cos 

�

r

By
=

r

B0
cos ,

r

By
=

R

By
sin .

Here, rco = R sin , yco =

✓
R

n

◆
ln

✓
1

cos 

◆
.

By = B0


exp

⇣ n

R
y
⌘
� n ln

✓
r

rco

◆�
.



FFA’22, Oxford 09/2022

Simulation
• Single particle tracking simulation 

• Leap-Flog integration  

• B field : analytical form 

• E field : rotating RF field 

• vy(0)=0 : initial velocity
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Simulation

• Orbit radius vs Magnetic field • Orbit radius vs Orbit height

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0  0.5  1  1.5  2  2.5

Bz
(T
)

radius(m)

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5

z(
m)

r(m)

Particle               proton 
Energy                400MeV 
Field index          n=0.5 
Magnetic field     1T 
RF electric field   0.75MV/m 
RF frequency       15MHz



FFA’22, Oxford 09/2022

Emittance
• Initial beam distribution in real 

space(pr=py=0): Gaussian     
      ●:   σr(initial)=10mm 

      ●:   σr(initial)=40mm

beam emittance: r-rp beam emittance: y-yp
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Adiabatic capture 
• The beam is injected to the system axially.  

• Initial velocity : vy(0)≠0 

• The axial particle momentum (py) can be transformed 
to the transverse direction adiabatically. 

• We define an adiabatic factor as follows.
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• Rotating RF field with a cyclotron resonance acceleration 

• How to make a rotating RF field 

• Superposition of two linear polarized fields, one of which is 90 degrees phase difference to 
another.

Rotating (circularly polarized) RF field
particle motion
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Rotating RF field 

• Air-core cavity 

• TE11/TE11-ridge mode 

• RF frequency : frf ~76MHz (B=5T for proton, B=10T 
for deuteron) 

• High RF field strength: ~MV/m  

• Decoupling between dipole and quadrupole modes, 
especially for a ridge mode. 

• MA loaded cavity(resonator) 

• RF frequnecy : frf ~15.3MHz (B=1T for proton, B=2T 
for deuteron) 

• Low RF field strength : ~100kV/m 

• LC resonator : High-Q MA(cut-core) as 
inductance(external)  

•

TE11 TE11-ridge

λ/4 phase shifter
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Summary

• Possibility of the phase-free RF accelerator with isochronous and 
zero-chromatic (ICZC) optics are studied. 

• Using a rotating (circularly polarized) RF field with ICZC optics, a 
cw (DC) beam acceleration with no-bunching can be possible and 
relax space-charge defocusing effects. 

• This type of hadron accelerators could provide a large beam power 
and be useful for production of intense secondary particles. 

• Critical technique issues are how to make a rotating RF field and a 
magnetic field of ICZC optics.  

• Clearly, design computations, and construction and operation of a 
prototype should be carried out.


