

Superconducting (SC) gantry with large momentum acceptance (LMA) applied to proton therapy

QIN Bin

Huazhong University of Science and Technology (HUST)

FFA 2022, September 25-30, Abingdon, UK

OUTLINE

1. SC gantry and motivation of large momentum acceptance design

2. Design of a LMA SC gantry based on CCT magnets

3. Potential clinical applications

Status of proton therapy – world-wide and China

PT centers in operation and under construction

3

3

[1] TR. Bortfeld, JS. Loeffler. Nature, 2017, 549(7673): 451-453. [2] J. Yap, A. De Franco and S. Sheehy, Front. Oncol., 2021, 11:780025

4

Challenges and unmet need for PT facilities

□ Shrink the PT infrastructure

- Superconducting technology applied to accelerators and gantries
- ✓ Compact single-room PT system
- ✓ Non-rotating gantry

$\ensuremath{\square}$ Increase the efficiency of beam delivery

- \checkmark Shortening delivery time
- ✓ Volumetric scanning
- ✓ FLASH

(Source: www.ptcog.ch)

SC gantry \rightarrow one of solution to shrink the PT facility

Applications of SC magnets (Super-ferric / CCT type) can significantly suppress both the footprint and weight of gantries.

Ramping limit for SC magnet

- To avoid quench due to local 'hot spot', the ramping of SC magnets is limited to ~ 1% B_{max} / s
 - -- AC losses , hysteresis losses $P_{hystersis} = \frac{2}{3\pi} J_c(B) d_{eff} \frac{dB_t}{dt} (1 + \frac{J^2}{Jc^2}),$ inter-filament coupling losses $\propto (dBt/dt)^2$
 - -- Eddy current, lamination of mandrel is required

▲ LBNL 90° AG-CCT prototype using laminated mandrel (anodized aluminum)

Due to very slow ramping speed, the magnetic field need be constant or have reduced ramping times.

→ From beam optics design, large momentum acceptance is required.

^AL. Brouwer et al., "Design of an Achromatic Superconducting Magnet for a Proton Therapy Gantry," in IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1-6, June 2017, Art no. 4400106, doi: 10.1109/TASC.2016.2628305.

Momentum (energy) range for proton beams from 4 types of tumors

- From MD Anderson Cancer Center statistics^A, dp/p = ±10% can treat ~60% of tumors without changing magnetic fields (THOR: thoracic; CNS: central nervous system; GI: gastrointestinal; GU: genitourinary); dp/p = ±15% can treat almost all cases.
- For most tumors, with a 15% momentum range beam, only one magnetic field change is required during treatment.

^A K. Suzuki et al., Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy, Medical Physics, 2011, 38(7)

OUTLINE

1. SC gantry and motivation of large momentum acceptance design

2. Design of a LMA SC gantry based on CCT magnets

3. Potential clinical applications

SC gantry using AG-CCT magnets

- We proposed a SC gantry using AG-CCT (Alternating-Gradient Canted-Cosine-Theta) magnet.
- Local dispersion suppression is realized by symmetrical optical structure and AG-CCT strong focusing.
- Downstream scanning with small SAD

[1] R.X. Zhao, B. Qin*, X. Liu et al., Physica Medica, 73 (2020) [2] X. Liu, B. Qin et al., Physica Medica, 73 (2020)

SC gantry using AG-CCT magnets

20

15

10

-5

-10

Dipole CCT

-50

Dipole CCT + AG-CCT

Ó

50

Bending angle(degree)

100

150

AG-CCT

--- SCOFF

Quadrupole field(T/m)

Particle tracing in 2^{nd} order, with dp/p= $\pm 8\%$ (Cosy Infinity calculation)

High order optics optimization with Generic Algorithm

- High order aberrations (up to 5th order) have significant influence on beam optics , for large momentum offset;
- Multi-object optimization using **NSGA-III genetic algorithm** was applied to search optimal parameters.

Validation using realistic magnetic fields

- Enge function can' t be applied to AG-CCT, realistic AG-CCT field is required;
- AG-CCT magnetic fields calculated by Biot-Savart law (in the absence of ferric material)
- Parallel computation with CUDA adopted to shorten the optimization time (speed-up ratio ~ 200)

Particle tracking @ iso-center, with realistic fields

R&D of AG-CCT prototype magnet

67.5° AG-CCT specifications

Parameter	Values
Bore aperture	166 mm
Bending radius	950 mm
Bending angle	67.5°
Dipole field	2.36 T
Gradient field	17.0 T/m
Max. field @ coil	4.5 T

CCT mandrel (Al alloy) and manufacture precision

• R&D of a 67.5° / 4 layers AG-CCT prototype magnet was initiated;

- 3 GM cryocoolers for direct cooling, NbTi superconductors;
- Laminated Aluminum alloy mandrel

OUTLINE

1. SC gantry and motivation of large momentum acceptance design

2. Design of a LMA SC gantry based on CCT magnets

3. Potential clinical applications

-- Towards improving delivery efficiency using LMA beamline

Large momentum acceptance \rightarrow higher transmission

Store and the contraction

- **•** For PT centers in world wide, cyclotron schemes possess around 55%
- Due to Multiple Coulomb scattering in the energy degrader, the transmission is quite low in low energy region (70-100 MeV) : <0.2% @ 70 MeV</p>
- □ Utilizing the **natural momentum spread** can enhance the transmission by a ratio ~ 5.

Improved beam transmission in LMA-SC gantry

Setup for comparison

- For NC gantry, momentum spread is set to constant +/-0.5% with energy slit
- For LMA-SC gantry, momentum spread is 'natural' after energy degrader (without cut from energy slit)
- Significant transmission increase at lower energy (70 -130 MeV)

Reduction of energy layers and spots, case study : prostate cancer

- Stand Blacktonit
- Two fields with angle: 90° and 270°; less layers become possible due to larger momentum spread
- We used an optimizer to concentrate on minimizing spot weights in low-weighted energy layers and then
 redistributes them to adjacent energy layers → Spots can be reduced by 95% for LMA SC scheme
- Balance between the **dose delivery time** and **treatment plan quality** (homogeneity index PTV HI < 10%)

Layer switch time – 250 ms Spot switch time – 1 ms

Challenge of large momentum acceptance SC Gantry

- 1. With large momentum beam, the dispersion due to scanning magnets is non-neglectable and need be compensated;
- Custom-made TPS should be developed for 3D planning of large momentum beam features;
- Due to the technical complexity of CCTs with large aperture, the cost is not low. Potential clinical applications of large momentum beams need be explored.
- 4. The LMA gantry could be an attractive solution for PT using laserdriven accelerators and carbon therapy.

Dispersive effect after scanning magnet for large momentum spread beam (e.g. dp/p=±2.4%)

Research group

Dr. Xu LIU, Beam delivery

Yicheng LIAO , Ph.D. Student Beam optics and magnet modelling

Wei WANG, Ph.D. Student Treatment planning with ML

Dr. Bin QIN Professor, Huazhong Univ. of Science and Technology Email: bin.qin@hust.edu.cn

Thank you