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Zgoubi spiral FFA magnet (FFAG-SPI)

116 6 WHAT KEYWORDS DO, AND OTHER AVAILABLE PROCEDURES

FFAG-SPI : Spiral FFAG magnet, N -tuple [52, 58]

FFAG-SPI works much like FFAG as to the field modelling, with essentially a different axial dependence.

The FFAG-SPI procedure allows overlapping of fringe fields of neighboring dipoles, thus simulating in
some sort the field in a dipole N -tuple (similar to Fig. 31, page 114). This allows for instance accounting
for fringe field effects, or clamps, as schemed in Fig. 32.

The dimensioning of the magnet is defined by

AT : total angular aperture
RM : mean radius used for the positioning of field boundaries

For each one of the N = 1 to (maximum) 5 dipoles of the N -tuple, the two effective field boundaries
(entrance and exit EFBs) from which the dipole field is drawn are defined from geometric boundaries, the
shape and position of which are determined by the following parameters

ACNi : arbitrary inner angle, used for EFBs positioning
ω : azimuth of an EFB with respect to ACN
ξ : spiral angle

with ACNi and ω as defined in Fig. 32 (similar to what can be found in Figs. 31 and 20).
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Figure 32: A N -tuple spiral sector FFAG magnet (N = 3 here, simulating active field
clamps at entrance and exit side of a central dipole).

Calculation of the Field From a Single Dipole

The magnetic field is calculated in polar coordinates. At all (R, θ) in the median plane (Z = 0), the
magnetic field due a single one (index i) of the dipoles of a N -tuple spiral FFAG magnet is written
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Calculation of the Field From a Single Dipole

The magnetic field is calculated in polar coordinates. At all (R, θ) in the median plane (Z = 0), the
magnetic field due a single one (index i) of the dipoles of a N -tuple spiral FFAG magnet is written
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Keywords and input data formatting 267

FFAG-SPI Spiral FFAG magnet, N -tuple
UNDER DEVELOPMENT

BZ =
∑N

i=1 BZ0,i Fi(R, θ) (R/RM,i)
Ki

IL IL = 1, 2[×10n], 7 : print coordinates along trajectories, fields, etc., 0-2[×10n], 7 I
into zgoubi.res (1) or zgoubi.plt (2[×10n]) or zgoubi.impdev.out (7).

N , AT , RM Number of dipoles in the FFAG N -tuple ; no dim, I, 2*E
total angular extent of the dipole ; reference radius. deg, cm

Repeat N times the following sequence

ACN, δRM , Azimuth for dipole positioning ; RM,i = RM + δRM ; deg, cm, kG, 4*E
BZ0, K field at RM,i ; index. no dim

ENTRANCE FIELD BOUNDARY

g0, κ Fringe field extent (g = g0 (RM/R)κ) cm, no dim 2*E
NC, C0 − C5, shift Unused ; C0 to C5 : fringe field coefficients ; EFB shift 0-6, 6*no dim, cm I, 7*E
ω+, ξ, 4 dummies Azimuth of entrance EFB with respect to ACN ; 2*deg, 4*unused 6*E

spiral angle ; 4×unused.

EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)

g0, κ Fringe field parameters, see above cm, no dim 2*E
NC, C0 − C5, shift 0-6, 6*no dim, cm 1, 7*E
ω−, ξ, 4 dummies 2*deg, 4*unused 6*E

LATERAL FIELD BOUNDARY to be implemented - following data not used

g0, κ cm, no dim 2*E
NC, C0 − C5, shift 0-6, 6*no dim, cm 1, 7*E
ω−, θ, R1, U1, U2, R2 2*deg, 4*cm 6*E

End of repeat

Integration boundaries - next line is optional, starting with string IntLim :

IntLim, ID, A, B, C Integration boundary. Line has to start with ’IntLim’. −1, 1, 2; deg; cm; I, 3*E
[, A′ , B′, C ′] ID = −1 : integration in the magnet begins at entrance deg [; id.] [,3*E]

boundary defined by A, B, C.
ID = 1 : integration is terminated at exit boundary defined
by A’, B’, C’.
ID = 2 : both entrance and exit boundaries.

KIRD, Resol [,DNEWT] If KIRD=0 : analytical computation of field derivatives ; 0, 2, 25 or 4 ; I, E
Resol = 2/4 for 2nd/4th order field derivatives computation. no dim
If KIRD = 2, 4 or 25 : numerical interpolation of field derivatives ;
size of flying interpolation mesh is XPAS/Resol.

KIRD=2 or 25 : second degree, 9- or 25-point grid
KIRD=4 : fourth degree, 25-point grid

If DNEWT is added, the distance to the magnet edge is calculated
numerically (in the case KIRD#=0). In its absence, and if κ = −1,
then the distance in terms of generalised azimuthal angle is used
instead.

XPAS Integration step cm E

KPOS, Positioning of the magnet, has to be 2. As follows : radius and 2, 2*(cm, rad) I, 4*E
RE, TE, RS, TS angle of reference, respectively, at entrance and exit of the magnet.



FDspiral FETS ring

Energy range 3-12 MeV

Mean radius at 
injection

4m

Field index 8.0095

Spiral angle 45 deg.

Cells 16

Angular extent of 
F,D 

4.5 deg.,  2.25 deg.

Fringe field extent 0.07m

3 Single particle tracking

Stepwise tracking in Fixfield has been realized. Parameters of tracking are summarized in
Table 2.

Table 2: Parameters of the tracking

Step size 10mm
Particle 1 Proton 3MeV
Particle 2 Proton 12MeV
Collimators (rmin, rmax, |zmax|) (3.5, 4.9, 0.25) m
closed orbit precision 10−12 m
initial amplitude for transfer matrix computation 10−5 m
Number of turns for DA 104

Closed orbits of Particle 1 (3 MeV) and 2 (12 MeV) are shown in Fig. 1. Corresponding
magnetic fields are presented in Fig. 2. Beta-functions for Particle 1 are shown in Fig. 3.
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Figure 1: Top view of the lattice showing a periodic cell with closed orbits of Particle 1 and 2.
Effective field boundaries with collimators are shown in black, and the blue areas represent the

magnets.
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Recent developments

• Increase order of off-midplane extrapolation, from z3 to z4.

• Allow different entrance and exit fringe field extents.

• In case derivatives are calculated with flying mesh (KIRD !=0), implemented fast calculation of 
distance to fringe field.

• In case derivatives are calculated analytically (KIRD=0), fixed some bugs that occured when
extrapolating off the midplane to 4th order.



Off-midplane extrapolation

26 1 NUMERICAL CALCULATION OF MOTION AND FIELDS

Median plane antisymmetry is assumed, which results in

BX(X, Y, 0) = 0

BY (X, Y, 0) = 0

BX(X, Y, Z) = −BX(X, Y,−Z)

BY (X, Y, Z) = −BY (X, Y,−Z)

BZ(X, Y, Z) = BZ(X, Y,−Z)

(1.3.2)

Accommodated with Maxwell’s equations, this results in Taylor expansions below, for the three components

of !B (here, B stands for BZ(X, Y, 0))

BX(X, Y, Z) = Z
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(1.3.3)

which are then differentiated one by one with respect to X , Y , or Z, up to second or fourth order (depending
on optical element or IORDRE option, see section 1.4.2) so as to get the expressions involved in eq. (1.2.10).

1.3.4 Extrapolation from Arbitrary 2-D Field Maps

2-D field maps that give the three components BX(X, Y, Z0), BY (X, Y, Z0) and BZ(X, Y, Z0) at each node

(X, Y ) of a Z0 Z-elevation map may be used. !B and its derivatives at any point (X, Y, Z) are calculated by
polynomial interpolation followed by Taylor expansions in Z, without any hypothesis of symmetries (see
section 1.4.3 and keywords MAP2D, MAP2D-E).

1.3.5 Interpolation in 3-D Field Maps [9]

In 3-D field maps !B and its derivatives up to the second order with respect to X , Y or Z are calculated by
means of a second order polynomial interpolation, from 3-D 3× 3× 3-point grid (see section 1.4.4).

1.3.6 2-D Analytical Field Models and Extrapolation

Several optical elements such as BEND, WIENFILT (that uses the BEND procedures), QUADISEX,
VENUS, etc., are defined from the expression of the field and derivatives in the median plane. 3-D ex-
trapolation of these off the median plane is drawn from Taylor expansions and Maxwell’s equations.

1.3.7 3-D Analytical Models of Fields

In many optical elements such as QUADRUPO, SEXTUPOL, MULTIPOL, EBMULT, etc., the three com-

ponents of !B and their derivatives with respect to X , Y or Z are obtained at any step along trajectories from
analytical expression drawn from the scalar potential V (X, Y, Z), namely

BX =
∂V

∂X
, BY =

∂V

∂Y
, BZ =

∂V

∂Z
,

∂BX

∂X
=
∂2V

∂X2
,

∂BX

∂Y
=

∂2V

∂X∂Y
, etc. (1.3.4)

and similarly for !E with opposite sign for the gradients.



Flying mesh : expansion off midplane to z4

DA, εn= 30.4 π mm mrad
Step size: 10mm
Order: z3

• Note - Expansion off midplane to 4th order (fix implemented in code)
• 1000 turns.
• KIRD=4 (5*5 mesh to calculate derivatives)
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εn= 19.36 π mm mrad
Step size: 10mm
Order: z3



Fringe field model

• The fringe field (Enge) is a function of distance to the magnet edge (d) divided by the extent λ.  
The distance d is a function of both (r,θ) while λ depends on r only.

• The polynomial P is given by

• The fringe field of the entrance, edge and lateral (unused) are combined by taking the product.

• The fringe field extent λ extent varies with radius according to the exponent -κ. Set κ=-1 to 
meet the scaling condition that λ increases with radius.
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Fringe field calculation in flying mesh case

• Distance to edge dS and dE found by Newton-
Raphson root finding.

• Around 50% of CPU time spent on this!



Field maps in various coordinate

• Create regular mesh in polar coordinates (r, θ). Transform to (r, θgen) and (x,y). 
• Evaluate midplane field in generalised polar coordinates (r, θgen) -> Bz= B0 (r/r0)k F(θgen).
• The magnet edge is at a fixed generalized polar coordinate.

Generalised polar mesh

Polar mesh Cartesian mesh
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Distance ratio found in generalised polar coordinates 

• Significant speed up by direct calculation of distance in terms of generalized polar coordinates.
• Include DNEWT to revert to old method.



Derivative of field
• The derivative of the magnetic field includes the fringe field contribution.

• Assuming F(r,θ) = Fe*Fs (product of entrance and and exit fringes)

• The derivative of an individual Enge fringe field (e.g. entrance) is given by

• The derivative of the polynomial P follows 

where 12



Analytic calculation of distance to edge
Coordinate system

Find point on straight edge passing through (Xb,Yb) with slope (ω-ξ)
(Xo,Yo)

(X,Y)

(Xb,Yb)

Distance to magnet edge
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Derivative of distance
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Issue
Effect of restoring fringe field derivatives

• Jump in coordinate caused by some numerical error.
• This occurs if the derivatives are calculated analytically up to 4th order in z (KIRD=0, RESOL=4).


