The 2022 Workshop on Fixed Field Alternating Gradient Accelerators - FFA school Cosener's House, OX, UK, 25-26/09/2022

A quick tour of zgoubi code and methods

1/ Zgoubi numerical methods, basics: let's turn pages in the Users' Guide

page 3 -	Table of contents PART A : Description of software contents	
page 20 -	Reference frame Pushing a particle	Fig. 1 Fig. 2
page 19 -	Pushing a particle in pure B fields: Lorentz Equation in "reduced" form Its solution Algorithm that calculates the Taylor series coefficients and the field derivatives they require	Eq. 1.2.1 Eq. 1.2.3 Eq. 1.2.4 Eq. 1.2.8 Eq.s 1.2.9, 1.2.10
page 21 -	Pushing a particle in pure E fields	We'll skip that, won't need it
page 24 -	Pushing a particle in pure E & B fields	We'll skip that, won't need it

2/ Example, tut exercise #1: Radial FFAG multiple-dipole

Use the INDEX (p. ~367) to stroll around in the Users' Guide

An FFAG radial dipole triplet

looks like this in real life (KEK, early 2000s):

Twelve of these triplets are assembled in this 150 MeV proton ring:

Lookup FFAG keyword in the INDEX - 2 bold numbers in general:

	1^{st} one sends to PART A, "simulation methods, physics content" 2^{nd} one sends to PART: formatting of the input data in zgoubi.dat	p. 114 p. 264
Let's go to p. 115 (PART A	A):	
p. 115 -	A principle sketch. Coding allows up to 5 dipoles within AT sector Computation of local field and derivatives at particle location are either analytical (all formulas coded in the source code)	Eq. 1.3.25
p. 102 -	or may instead use a small flying grid centered at particle location	Fig. 23
p. 101 -	Individual dipole field and derivaitves are then superimposed using	Eqs. 6.3.23, 6.3.24

Coding in zgoubi.dat: back to the INDEX, or a glossary pp. 217, 218 as well will take you PART B, p. 264 ...

We'll go into the details during the radial FFAG tutorial (follows David's spiral FFAG tutorial)

3/ Example, tut exercise #2: Spiral FFAG dipole \rightarrow David

Use the INDEX (p. ~367) to stroll around in the Users' Guide

Actually, a spiral dipole doublet is going to be dealt with, with David:

A spiral FFAG dipole

Twelve such spiral dipoles are assembled in this

Lookup FFAG-SPI keyword in the INDEX - 2 bold numbers in general:

	1 st one sends to PART A, "simulation methods, physics content" 2 nd one sends to PART: formatting of the input data in zgoubi.dat	p. 114 p. 265
Let's go to p. 114 (PART A	A):	
p. 118 -	A principle sketch. Coding allows up to 5 dipoles within AT sector Computation of local field and derivatives at particle location are either analytical (all formulas coded in the source code)	Eq. 6.3.27
p 102 -	or may instead use a small flying grid centered at particle location	Fig. 23
p. 101 -	Individual dipole field and derivaitves are then superimposed using	Eqs. 6.3.23, 6.3.24

Coding in zgoubi.dat: PART B, p. 265

4/ Example, tut exercise #3: Vertical FFAG dipole → Marion

Developed in zgoubi the past 2~3 years by Marion and co-workers @ ULB

quite a piece of art form my point of view

You won't be able to use the INDEX in the Users' Guide: still needs be documented. Placeholders are in place though, see p. 215 (PART A), p. 218 (PART B),

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 16, 084001 (2013)