Quiz on Transverse Beam Dynamics

FFA School 2022

Thomas Planche

きTRIUMF

Question 1

What is(are) the fundamental assumption(s) that allowed us to use transfer matrices to describe the transverse motion of particles?
(1) That particles are not relativistic $(v \ll c)$
(2) That particles are hyper relativistic ($v \approx c$)
(3) That transverse forces are linear
(4) That we worked in a non-inertial frame of reference

Question 1

What is(are) the fundamental assumption(s) that allowed us to use transfer matrices to describe the transverse motion of particles?

(3) That transverse forces are linear

Question 2

Let M_{F} be the transfer matrix across an F (focusing) quadrupole, and M_{D} be the transfer matrix across a D (defocusing) quadrupole, what is the transfer matrix of an FD doublet?
(1) $\mathrm{M}_{\mathrm{F}}+\mathrm{M}_{\mathrm{D}}$
(2) $\mathrm{M}_{\mathrm{F}} \cdot \mathrm{M}_{\mathrm{D}}$
(3) $\mathrm{M}_{\mathrm{D}} \cdot \mathrm{M}_{\mathrm{F}}$
(4) $\mathrm{M}_{\mathrm{F}} \cdot \mathrm{M}_{\mathrm{D}} \cdot \mathrm{M}_{\mathrm{F}}^{\top}$

Question 2

Let M_{F} be the transfer matrix across an F (focusing) quadrupole, and M_{D} be the transfer matrix across a D (defocusing) quadrupole, what is the transfer matrix of an FD doublet?
(1) $M H / H / \mathbb{M} d$
(2) $\operatorname{MI} H / N \mathbb{N}_{b}$
(3) $\mathrm{M}_{\mathrm{D}} \cdot \mathrm{M}_{\mathrm{F}}$

Question 3

Let $M_{A \rightarrow B}$ be the transfer matrix from point A to point B, what is the determinant of this matrix equal to:
(1) 1
(2) $\frac{P_{\mathrm{A}}}{P_{\mathrm{B}}}$
(3) $\frac{P_{B}}{P_{\mathrm{A}}}$
(4) $\sqrt{\frac{P_{\mathrm{B}}}{P_{\mathrm{A}}}}$

Question 3

Let $M_{A \rightarrow B}$ be the transfer matrix from point A to point B, what is the determinant of this matrix equal to:
(1) $1 /$
(2) $\frac{P_{\mathrm{A}}}{P_{\mathrm{B}}}$
(3) 陏
(4) $\sqrt{ } / \sqrt{P_{P_{A}}}$

Question 4

Let $\boldsymbol{\Sigma}$ be beam matrix of our beam: how do you calculate its RMS emittance?
(1) $\epsilon=\sqrt{|\boldsymbol{\Sigma}|}$
(2) $\sqrt{\epsilon}=|\Sigma|$
(3) $\epsilon=|\Sigma|$
(4) $\epsilon=4|\boldsymbol{\Sigma}|$

Question 4

Let $\boldsymbol{\Sigma}$ be beam matrix of our beam: how do you calculate its RMS emittance?
(1) $\epsilon=\sqrt{|\Sigma|}$
(2) WIAH|
(3) $k / \# /|/ Z|$
(4) $k|\#| A|\Psi|$

Question 5

Under which of the following condition(s) is the normalized RMS emittance not conserved?
(1) When their is acceleration
(2) When transverse forces are linear
(3) When transverse forces are not linear
(4) When the beam distribution does not have elliptical symmetry

Question 5

Under which of the following condition(s) is the normalized RMS emittance not conserved?

(3) When transverse forces are not linear

6D Phase Space

With s as independent variable the full state vector of a particle is:

$$
\mathbf{X}=\left(\begin{array}{c}
x \\
P_{x} \\
y \\
P_{y} \\
\Delta t \\
-\Delta E
\end{array}\right)
$$

6D Phase Space

With s as independent variable the full state vector of a particle is:

$$
\mathbf{X}=\left(\begin{array}{c}
x \\
\frac{P_{x}}{P_{0}} \\
y \\
\frac{P_{y}}{P_{0}} \\
\Delta t \\
\frac{-\Delta E}{P_{0}}
\end{array}\right)
$$

6D Phase Space

With s as independent variable the full state vector of a particle is:

$$
\mathbf{X}=\left(\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
\Delta t * \beta_{0} c \\
\frac{-\Delta E}{P_{0}} * \frac{1}{\beta_{0} c}
\end{array}\right)
$$

6D Phase Space

With s as independent variable the full state vector of a particle is:

$$
\mathbf{X}=\left(\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
z \\
z^{\prime}
\end{array}\right)
$$

6D Phase Space

With s as independent variable the full state vector of a particle is:

$$
\mathbf{X}=\left(\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
z \\
z^{\prime}
\end{array}\right)
$$

there are 15 conserved quantities $(15=n(2 n-1), n=3$, symplectic conditions).

