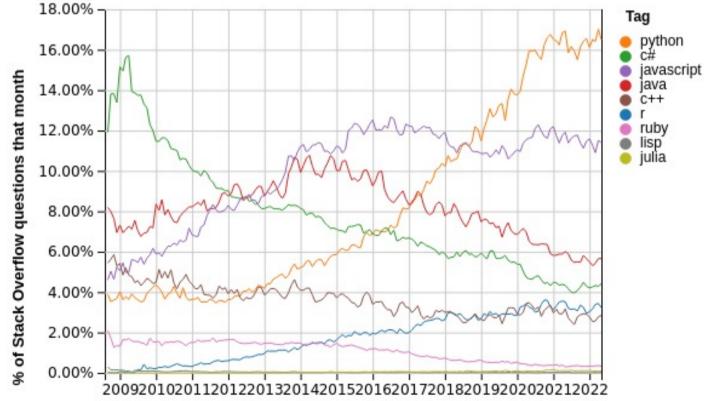

Machine Learning Tutorial Overview

Emmanuel Olaiya

Rutherford Appleton Laboratory

13th June 2022

Agenda



Content

- What is the goal of the tutorial
 - Continue the learning. Learn by doing!
 - Give you some hands on experience
 - Introduce you to some simple tools that have a wide application
- Again this is an introduction. So the examples will be straightforward. Anyone who has done any machine learning before may find it easy. This workbook is for beginners!
- The tutorial will be a walkthrough
 - It will be interactive. You will be able to execute code. Modify it if you want
 - There will be some exercises for you to practice implementing machine learning code

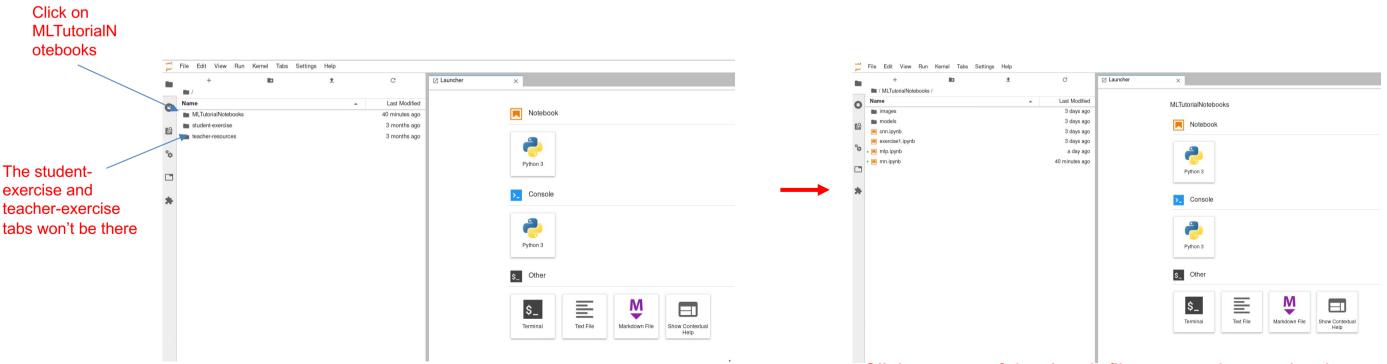
Contents

- What programming languages are used for machine learning
 - Python, R, Java, Julia, LISP, C++,, lots!
- Python is a language that continues to grow in popularity. Python is the language we will use

Contents

- So what are the machine learning toolkits available
 - Again lots: Tensorflow, Pytorch, Sklearn, Amazon Machine Learning (AML), Shogun,
 - We will be using <u>Tensorflow</u>, a platform owned by Google, it is well supported, easy to use and has a wide range of features
 - GPU support is seamless (for Nvidia cards!)
 - Good at detecting if you have GPUs and then just using them without any need for configuring

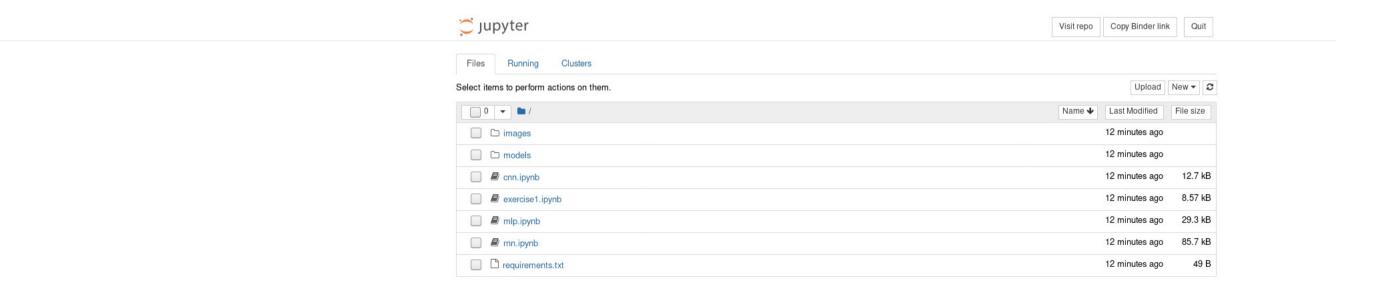
Jupyter Notebooks


- We will use Jupyter Notebooks for this tutorial
- What are they?
- They are a web-based Interactive Development Environment (IDE), from which you can program and run code

How do we run the notebooks

- There are many ways to run the notebooks. I am going to suggest 4
 If you have a preferable method then that is fine
 My suggestions are:
- 1. Using the RAL computing cluster
- 2. Using mybinder.org
- 3. Using Google Colab
- 4. Running on your own computer

Using the RAL Cluster


- If you want to use the RAL cluster I will provide you with a username and a password
- Go to the page <u>https://monty.stfc.ac.uk</u> Log in with your username and password. You should see the following:

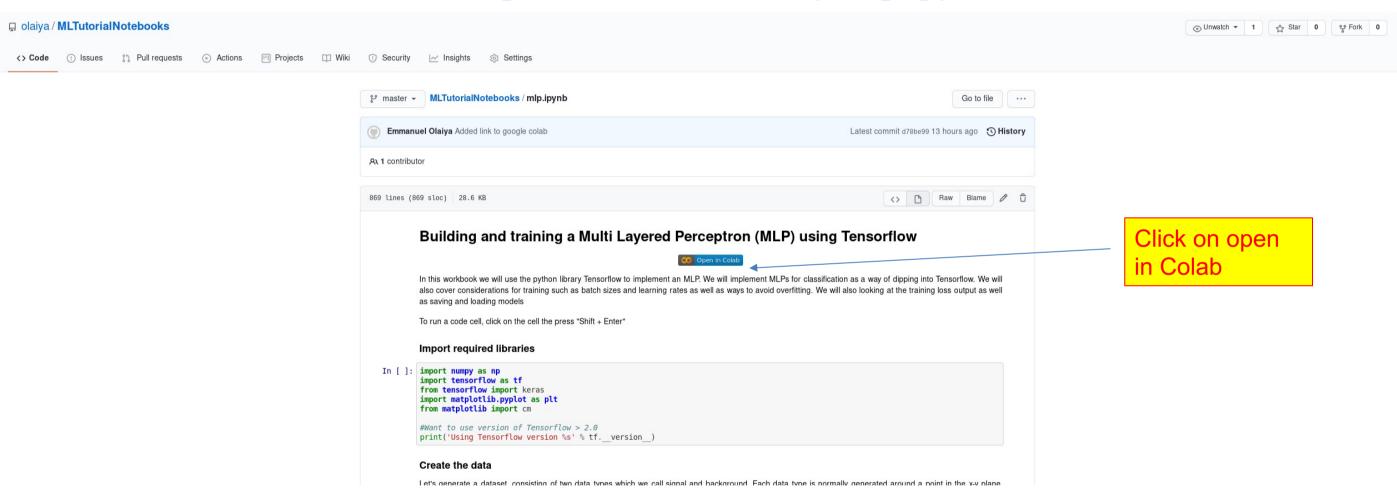
Click on one of the .ipynb files to run the notebook

Using mybinder.org

- Everyone can use this option
- Just click on this link:
 - https://mybinder.org/v2/gh/olaiya/MLTutorialNotebooks.git/HEAD
- After a while you should be able to see the notebook

If you are using mybinder, connect to the above link 5 mins before the start of the tutorial. Sometimes it can take a few minutes to fire up the container that hosts the notebook

Using Google Colab


- People with a Google account can use this option
- Make sure you are logged into your Google account
- Go to the workbook files on github:
 - https://github.com/olaiya/MLTutorialNotebooks

© 2021 GitHub. Inc

		টি master 🗸 টি 1 branch 📀 0	tags	Go to file Add file -	⊻ Code -	About
		Emmanuel Olaiya and Emmanu	el Olaiya Added link to google colab	d70be99 13 hours ago	8 commits	No description, website, or topics provided.
		images	Added exercise1.ipynb and rnn.ipynb		3 days ago	
		models	Added models directory		3 days ago	Releases No releases published Create a new release
		🗅 cnn.ipynb	Added link to google colab		13 hours ago	
		exercise1.ipynb	Added exercise1.ipynb and rnn.ipynb		3 days ago	
		🗅 mlp.ipynb	Added link to google colab		Packages	
		requirements.txt	Added requirements file 3 days ago	No packages published		
		🗅 rnn.ipynb	Added link to google colab		13 hours ago	Publish your first package
		Help people interested in this reposito	ry understand your project by adding a README.		Add a README	Languages
						Jupyter Notebook 100.0%

Using Google Colab

• When we work on a specific workbook, say mlp.ipynb, click on it

• If clicking on icon doesn't work, copy and paste link in your browser

Using Google Colab

• The workbook should load

co	nlp.ipynb File Edit View Insert Runtime Tools Help	G Share 🏟
=	+ Code + Text A Copy to Drive	Connect 👻 🎤 Editing
 	Building and training a Multi Layered Perceptron (MLP) using Tensorflow	↑ ↓ ⇔ 🌶 🗋 📋
	CO Open in Colab	
	In this workbook we will use the python library Tensorflow to implement an MLP. We will implement MLPs for classification as a way of dipping into Tensorflow. We will also cover considerations for training such as batch sizes and learning rates as well as ways to avoid overfitting. We will also looking at the training loss output as well as saving and loading models To run a code cell, click on the cell the press "Shift + Enter"	
	<pre>[] import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt from matplotlib import cm #Want to use version of Tensorflow > 2.0 print('Using Tensorflow version %s' % tfversion_)</pre>	

Using Your Own Computer

- If you want to run the workbook on your own computer that is fine
- Workbook is intentionally lightweight for this purpose
- Many setups you can use, install all the software, use a container such as Docker, use Conda
- What you need is git, python3 and the following libraries, tensorflow (>2.0.0), numpy, pandas, sklearn, matplotlib, jupyter
 - You don't need a GPU
- To pull the workbook onto you computer run:
 - git clone https://github.com/olaiya/MLTutorialNotebooks.git

Or download the workbook directly from the webpage: <u>https://github.com/olaiya/MLTutorialNotebooks</u>

Run jupyter notebook

٠

Running A Workbook

- Workbooks are a collection of cells. The cells are either code cells or markdown cells (adding text or images)
- To run a piece of code in a cell, select the cell and press Shift+Enter

co	C mlp.ipynb File Edit View Insert Runtime Tools Help <u>Cannot save changes</u>	🖘 Share 🕻	¢ 👰
=	+ Code + Text 💩 Copy to Drive	✓ RAM Editin	ing A
Q	- Building and training a Multi Layered Perceptron (MLP) using Tensorflow		
	CO Open in Colab		
	In this workbook we will use the python library Tensorflow to implement an MLP. We will implement MLPs for classification as a way of dipping into Tensorflow. We will also cover considerations for training such as batch sizes and learning rates as well as ways to avoid overfitting. We will also looking at the training loss output as well as saving and loading models		
	To run a code cell, click on the cell the press "Shift + Enter"		
-	 Import required libraries 		
	<pre>[1] import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt from matplotlib import cm</pre>		
	#Want to use version of Tensorflow > 2.0 print('Using Tensorflow version %s' % tfversion)		
	llsing Tensorflaw version 2 5 0		

- To add a cell click Insert->Code/Text cell
 - Some instances Insert->Cell Above/Below
 - Then select Cell->Cell type (to change between code and markdown)

Today's Workbook Tutorial

- Today we will walk through workbooks on:
 - MLPs
 - CNNs
 - RNNs
- Hopefully we will have a bit of time for you modify the code and even create and run some code yourself
- Decide how you want to access the workbook. These slides will be available on the Indico agenda if you want to review the options again at a later date. Access to monty.stfc.ac.uk will be available all week