
Computing
James Walder

13 June 2022

With much material provided by Stewart Martin-Haugh

• Computers:

• Historically, the word dates back as far as the 17th Century,

• Referred to humans who carried out carried out calculations or computations. 

• Modern (machine) computers provide advantage of humans of:

• Computers offer two principal advantages over humans:

• Correctness, and repeatability / reproducibility

• Speed:

• For ‘simple’ and repetitive operations  
 (although modern techniques of machine learning are making complex tasks
accessible for computers; e.g. chess, visual recognition tasks).

2

Programming Languages
• C++ and Python most prevalent within Particle Physics community

• C++ is rather stable over recent years

• TIOBE Index

• Python replaced C as #1 ranking 
in last 12 months

• #3 Java

• #4 C++

3

Source: insights.stackoverflow

C++

https://www.tiobe.com/tiobe-index/
https://insights.stackoverflow.com/trends?tags=java%2Cc%2Cc%2B%2B%2Cpython%2Cc%23%2Cvb.net%2Cjavascript%2Cassembly%2Cphp%2Cperl%2Cruby%2Cvb%2Cswift%2Cr%2Cobjective-c

Python
• Python:

• Excellent as a scripting language:

• Easy to read and write (also easy to introduce typos, etc; Type Hints can help spot these).

• Slower than C++ (interpreted, versus compiled):

• Can call / leverage other languages (e.g C++ / fortran) when speed is required (numpy, numba, ROOT)

• In HEP:

• Used as the ‘glue’ within framework software to combine C++ code (e.g Athena, CMSSW)

• Recent evolution of using python at the ‘analysis stage’ of a physics analysis (e.g pyhf)

• PyHEP Workshops

• https://scikit-hep.org :

• Community-driven effort for creating an  
ecosystem for data analysis in Python

4

https://hepsoftwarefoundation.org/workinggroups/pyhep.html
https://scikit-hep.org

C++
• Large and complicated language; many ways to accomplish same things:

• C (arrays, pointers, functions)

• Traditional C++ (new, delete, classes)

• Templates (template class<T>)

• Modern C++ (std::unique_ptr, for (auto x: y) {})

• Will find all of these approaches in large project codebases: (e.g. HEP experimental software frameworks);

• Can co-exist (for better, or worse …)

• Evolving language; new standards every 3 years;

• C++11 standard introduced modern C++, (C++14 considered incremental, with C++17 and C++20 bringing
additional functionality).

• C and C++ are probably the best-supported ways to write fast code

5

Other languages
• Java, Javascript, C# and various languages with more domain-specific utility:

• A few recent ‘newcomers’ attracting some attention:

• Go: ~ modern C (with some less complication)

• Rust: aims to be like a correct-by-default C++

• Better to avoid memory leak, buffer overwrites

• Julia: aims to be like a fast Python

6

Software Engineering
• Everything around the actual writing of code  

 (and distinct from the theoretical aspects of computer science)

• Use of sound engineering best practices, and encompasses at least:

• Requirements gathering and specification definition

• Debugging

• Testing

• Packaging

• Documenting

• Operating environments

• Considerations around ongoing maintenance and evolution

7

Term “Software Engineering” promoted by Margaret Hamilton, lead programmer for the Apollo Mission guidance computer

Testing for Correctness
• Demonstrating an algorithm is correct with respect to its specification:

• Usually interested in functional correctness;

• that for a given input for a computation the correct output is returned.

• General approaches could be:

• Find version of the calculation (not an edge case) where the answer is known;

• Make changes that should not affect the answer and verify the result.

• Also try to test on edge-cases.

• Important all to test that code handles problematic cases correctly:

• e.g. passing in an incorrect type (e.g. python)

• Out-of-range values

• Invalid values (nan)

• Might be sufficient just to crash the code;

• Or handle any and all possible exceptions

8

Debugging: Thoughts
• Brian Kernighan (C, Unix etc):

• The most effective debugging tool is still careful thought,  
coupled with judiciously placed print statements.

• Everyone knows that debugging is twice as hard as writing a  
program in the first place.

• So if you’re as clever as you can be when you write it, how will you ever debug it?

• Rubber ducks and teddy bears:

• Explain your problem to anyone – doesn’t need to be an expert

• Doesn’t even need to be a living entity; rubber ducks and teddy bears

• Draft and email for an expert, explaining what you have done / what you think is happening.

• – Documenting / explaining your thought process and problems found leads 1) to better understanding of the
issue, and 2) possibly its solution.

9

Debugging: Process
• Reproduce the problem;

• document exact setup instructions (environment, command, extra software / settings)

• If necessary distill the problem to it’s simplest components:

• e.g could write a separate small program that generates the same errors

• Find the fix …

• Establish that the fix has no undue side effect 
 (e.g. that tests unrelated to the fix still gives expected results)

• Consider creating tests to make sure issue can’t reoccur (see later)

10

Static analysis
• Static analysis (compared to Dynamic analysis) is the study / debugging of  

source code before executing the program.

• Many automated tools to help.

• Code review process with another human also important.

• Include these tools into your testing cycle (more later)
11

• Python:

• Flake8

• (Static analysis plus pep8 style
guide)

• Vulture (find unused/unreachable code)

• Type hints: (introduced in python 3.5;

• Improved static type checking

def hello_world (name: str) -> str:
 return f'Hello {name}'

• C++:

• Compiler Errors and Warnings

• Enable as many Warning flags as
possible, and consider them as
code problems until fixed.

• cppcheck (fast)

• Coverity (slow …)

Dynamic analysis
• Study of your code while the program is being executed

• Ideally run tests for variety of scenarios / edge cases to test all coverage of code.

• Usually accomplished by adding extra information to the compiled binary  
(or running code) that augments the output

• Including when things go wrong (or even to make it crash)

• Extra print statements / logging info

• Debug symbols: e.g g++ -g to add line numbers, etc to your crashes

• GDB and similar: use the debugger to trace error points / add breakpoints, read stack traces

• Valgrind: run in a virtual environment to identify memory errors

• Sanitizer tools (part of Clang project): tell you if you’re writing outside allowed memory, using uninitialised
data

12

Memory errors (C++)
• Most common: reading/writing beyond an array

•vector<float> vec;  
vec.push_back(1); 
std::cout << vec[2] << std::endl;

• Results are undefined, as random memory is read:

• Might print 0, could print 1.1755e-38 , could crash

• Results irreproducible

• AddressSanitizer or running under valgrind

• vec.at(i) will throw an exception when attempting to access past the end of the array

• It is slightly slower (but unlikely to be significant in most cases)

13

Floating point errors
• 1.0/0.0, 0.0 / 0.0, sqrt(-1), inf, NaN, -NaN,

• All floating point exceptions

• Mathematical operations involving NaN (C++) will produce NaN; can pollute results and should be fixed:

• In numerical computations, may need to identify and catch at runtime (.e.g isinf, isnan)

• Floats are most precise close to 0 - avoid using very small and very large numbers  

• Strongly recommend reading Floating point demystified for a more thorough understanding  

• NB. In python, 1.0/0.0 type operations raise exceptions (ZeroDivisionError).

• Also, in higher level applications (e.g. Pandas) NaN may be used to represent ‘missing data’ or similar

14

https://blog.reverberate.org/2014/09/what-every-computer-programmer-should.html

Testing
• Testing correctness of code can manifest at several levels:

• Types of Tests:

• System / Integration tests: test that the different components work together - usually at scale.

• For example; run reconstruction code over a large dataset. Does it crash? Are the results the same as the previous
(night’s) test - and if not, is it understood.

• Large scale validation runs.

• Generally easiest to write, as mirrors the nominal operation of the code;

• Might be difficult to ensure full coverage.

• Regression tests: check that a fixed bug does not reappear;

• Harder to write; need to keep track of test cases; only to prevent a reoccurrence of previous bugs.

• Unit tests: check functionality at a ~ function level - should be quick to run

• Hardest to write: think about what each function does, and to test all cases of input.

• Might need extra code to set up, fake input data, or even a mocked-up backend

• Test driven development; first write the test, then develop the code to pass the tests.

• Static analysis:

• Add to your tests (e.g. in continuous integration); preferable to catch any problems at the static analysis stage, if you can

• Writing any tests is good; the more you do, the better at writing them you’ll become.
15

Unit test examples: python
• Using asserts:

• Useful for checking that a change that shouldn’t change the output, doesn’t change the output

• assert in python is in general very useful; apply where needed.

16

def squ(x):  
 return x**2 + 1
def test_squ(): 
 assert squ(42)==1764, “should be 1764”
test_squ()

Traceback (most recent call last):

 File "square.py", line 6, in <module>

 test_squ()

 File "square.py", line 5, in test_squ

 assert(squ(42)==1764), should be

AssertionError: should be 1764

Unit test: frameworks
• In C++, CppUnit, GoogleTest is useful for functional tests.

• Python has: unittest, nose, pytest, …

• Unittesting libraries provide a framework to run tests, setup and tear down initial states and collate the outputs into various formats.

• Other methods of automation tests - beyond function level testing also exist; e.g.  
https://robotframework.org for automation testing of application level processes (e.g. logging into a website, API call correctness,
etc).

• Very easy to ‘go overboard’ when first exploring tests; think about the cases you really want to be checking;

• Also consider testing failure mode correctness, as well as checking for correct behaviour.

17

import unittest
from square import squ

class TestSquare(unittest.TestCase):
 def test_square(self):
 self.assertEqual(squ(42), 1764)

if __name__ == '__main__':
 unittest.main()

python test_square.py

F

==

FAIL: test_square (__main__.TestSquare)

--

Traceback (most recent call last):

 File "test_square.py", line 7, in test_square

 self.assertEqual(squ(42), 1764)

AssertionError: 1765 != 1764

--

Ran 1 test in 0.000s

FAILED (failures=1)

https://robotframework.org

Random and comprehensive testing
• Random input testing not truly well used within particle physics:

• Although large MC and data samples with inherent randomness is used

• Fuzz testing (more important from security concerns) attempts to construct malformed or ‘almost-valid’ inputs in
order to expose limitations in the code (e.g. poor parser logic).

• Coverage:

• Coverage is a measure of how much of the code is actually being tested:

• High coverage does not necessarily mean that it is exhaustively testing possible test cases of a function.

• Good to aim for high coverage, but experience / code complexity may suggest where you need to place
effort on your test cases

18

Continuous Integration
• Use tools, such as GitLab CI, Jenkins, Travis CI to automate your build / testing phase

• Catch problems before they’re part of the main codebase

• Demonstrate functionality (or rather, lack of changing other outputs) to maintainers of projects

• Run as many tests as you can for a merge / pull request

•

19

#example gitlab CI for LaTeX
stages: 
- build
build: 
 image: thomasweise/docker-texlive-full stage: build 
 script: 
 - apt update -y 
 - apt install -y biber 
 - make 
 artifacts:
 paths: 
 - "*.pdf"
 expire_in: 1 week

Containers
• Useful for many reasons:

• debugging, versioning, sharing code, reproducibility

• Run a lightweight virtual operating system on top of your real OS

• Similar to a virtual machine (some OSs, e.g. Mac run docker within a small VM 

• Easily run Linux programs on Mac, Windows 

• A description of an environment that someone else can run

• e.g. in docker; a dockerfile declares the base image and all changes needed to build the container image

• Can run on the Grid

• Provides a repeatable / reproducible environment:

• Docker is most well known:

• Apptainer / singularity also well used within (and outside) HEP community

20

Correctness: Summary
• Expect debugging and testing of code to take longer than the code implementation

• Make use of:

• Human code reviews

• Tools for static and dynamic analysis:

• Unit tests, integration tests, etc.

• Remember the next person who will maintain your code (it might still be you …)

• Documentation; inline, external, …

• Questions?

21

Fast computing
• High throughput computing

• Can parallelise and buffer data for later processing

• LHC;

• Generally ‘embarrassing parallel’ class of problems

• Events (typically) independent of each other (modulo detector conditions, etc.)

• Maximise throughput = events/second

• Low latency computing

• impossible or not useful to buffer

• High frequency trading, autonomous vehicles

• High performance computing

• Problems that don’t parallelise easily - supercomputer

• Climate modelling (inter-grid communications)

• Fast connections between processors, lots of RAM

• (HPCs are running LHC software)

22

CPUs
• CPU clock speed no longer following Moore’s law: 

(since ~ 2006)

• ‘Free code speed-up’

• Transistor density does continue to follow  
Moore’s law 

• Memory has fallen behind CPU -  
big bottleneck frequently memory access  

• More processing power available 
 through parallelism  

• More intelligence and complexity now required 
to keep increasing performance gains

23 Source: Herb Sutter

http://www.gotw.ca/publications/concurrency-ddj.htm

Memory
• Fast memory is expensive (in cost)

• Moving data between memory caches (and to/from 
io devices is expensive (in time)

• Fastest memory in L1 caches, closest to the CPU,

• Then L2, L3,

• Next fastest is RAM

• Slowest then is on the physical storage:

• (HDD, SSDs, Tape)

• Cache miss => retrieving data from a different cache

• NUMA: modern servers with multiple sockets and Processors:

• Memory allocated to individual sockets, sharing and  
moving data between memory adding to overheads

24

Source: What Every Programmer Should Know About Memory
• NUMA: Non-uniform memory access

https://www.akkadia.org/drepper/cpumemory.pdf

Pipelining
• 	 Pipelining allows processors to execute multiple instructions per clock cycle:

• Aim to keep each processor unit busy per cpu by dividing instructions into a series of parallel steps.

• Only works if code is linear

• Branching is an issues;

• e.g. conditional statements, if / else

• Unable to load instructions past the branch point 

25

Five stage : Instruction pipeline

IF = Instruction Fetch,
 ID = Instruction Decode

EX = Execute
MEM = Memory access

WB = Register write back

https://en.wikipedia.org/wiki/Instruction_pipelining

Branch prediction
• Aim to solve problem of not allowing instruction loading past branch point

• 	 Module within CPU decides which branch to take (see here)

• Allows CPU to pipeline code with branches;

• However, significant penalty if non-predicted branch is selected.

• 	 CPU has to load new code into pipeline

• 	 General Solutions:

• remove branches if possible

• Unbalance the branching (e.g. 10 / 90% vs 50/50%). 

• Sort the data:

• See stackoverflow.com

• i.e. branch prediction might be optimal on sorted data

• However, penalty for sorting operation might make this ultimately slower …
26

If (x) {
…  

} else {
…
}

https://danluu.com/branch-prediction/
https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array

Parallelism / concurrency

• An entirely parallelisable calculation is referred to as embarrassingly parallel

• Event generation: every collision has no dependency on the previous

• Simulate each collision on a separate CPU: scale to number of CPUs available

• Most calculations have a parallel and serial component, which limits the speedup

27

Parallel and serial components
• Naive example

• Assume:

• Making a car requires 1000 identical parts: each part takes 1 minute to make  

• The 1000 identical parts must be assembled in a final step: this takes 60 minutes

• Serial path

• 1000 parts assembled by a single worker + final assembly = 1000 + 60 minutes = 1060 minutes

• Parallel path

• 1000 parts assembled by different workers simultaneously + car assembly = 1 + 60 minutes = 61 minutes

• Maximum speedup 1060/61 = 17.4

• No further gains without improving the final assembly (serial part) 

• Amdahl’s law formalises this reasoning to an equation.  

28

https://en.wikipedia.org/wiki/Amdahl%27s_law

Parallel architectures
• A broad definition of parallel architectures;  

proposed in 1966 (and extended in 1972) by 
Michael J. Flynn.

• SISD: Single Instruction, Single Data)

• single-threaded operation

• SIMD: Single Instruction, Multiple Data)

• vector operations

• MISD: Multiple Instruction, Single Data:

• Not common

• MIMD: Multiple Instruction, Multiple Data)

• multi-threaded operation

29

Source: Wikipedia

https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

Vectorisation/SIMD
• Modern CPUs can execute the same instructions on multiple data simultaneously

• Consider vector addition of two vectors into a result vector

• Scalar operation:

• Each element treated separately

• SIMD:

• Computation performed across multiple elements simultaneously. e.g. a 32-bit register acting as 4 8-bit registers.

• Different architectures depending on CPU generation: MMX, SSE, AVX

• Code generated for one instruction set will not work with another

30

A0 B0 R0

A1 B1 R1

A2 B2 R2

+ =

A3 B3 R3

A0 B0 R0+ =

A1 B1 R1+ =

A2 B2 R2+ =

A3 B3 R3+ =

Scalar
SIMD

Auto-vectorisation
• Compiler can generate appropriate vector instructions for loops etc

• Will not always apply it if not beneficial

• Might need re-think of code implementation to be used:

• e.g. not looping over a vector of Particles (each containing a px,py,pz), but rather looping through vectors of
px,py,pz, where a corresponding row of elements represents a given particle.

•

31

Implementing vectorisation
• Autovectorisation is fragile: re-order your code and it can disappear  

• Can write using vector intrinsics: functions that act on arrays of  
data and operate accordingly

• Resulting code will not compile on different CPU type (e.g. ARM, older Intel/AMD):

• Approaches for developing for heterogeneous environments becoming increasingly important

• More complicated to write  

• Easiest solution: use a library written by an expert

• E.g. for cos(), exp(), atan2()

• CERN VDT

• Intel and AMD mathematical function libraries

• For matrix/linear algebra

• Eigen

32

https://github.com/dpiparo/vdt
https://eigen.tuxfamily.org/index.php?title=Main_Page

Multi-Threading
• Multiple instructions, multiple data : MIMD

• A thread is a sub-program controlled by your main program

• Operating system decides when and on which CPU they run

• (e.g n threads running across m CPUS)

• Thread order is non-deterministic: can lead to difficult bugs

• Race conditions, deadlocks, irreproducible output

• Usually one thread per CPU

• Swapping between threads on one CPU: “hyper-threading”

• Simplest case:

• Single thread runs until blocked by some high-latency 
operation (e.g. a cache miss, and needed to await for data)

• More complex:

• simultaneous multithreading (SMT) tries to exploit limited instruction-level  
parallelism per thread and attempts to call instructions from multiple threads 
to minimise wasted slots per cycle

33

Source: Wikipedia

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)

Threading with OpenMP
• Popular interface for multiprocessing tasks

• Code must ensure that there is no dependency on the order that threads run, or on data local to the thread.

• May need to introduce synchronisation steps to wait for all current threads to complete before moving on.

• Intel Threading Building Blocks: used by ATLAS, CMS, LHCb for multi-threaded data processing

• OpenMP is best for simpler situations with limited relationships between threads

• Other frameworks (e.g. HPX) also exist.
34

Threading example with OpenMP
#include <iostream>
#include <omp.h>
int main() {

#pragma omp parallel num_threads(4)
{

int thread = omp_get_thread_num();
int total = omp_get_num_threads();
std::cout << "Greetings from thread " << thread << "

 out of " << total << std::endl;
}
std::cout << "parallel for ends." << std::endl;
return 0;

}
g++ -fopenmp test_omp.cpp && ./a.out
Greetings from thread 1 out of 4
Greetings from thread 0 out of 4
Greetings from thread 3 out of 4
Greetings from thread 2 out of 4

I Must program in a way that avoids dependence on thread order or
data local to each thread

Stewart Martin-Haugh (STFC RAL) Computing 34 / 67

https://github.com/STEllAR-GROUP/hpx

GPU programming
• Initially designed for graphics calculations: matrix and vector operations

• Tailored towards embarrassingly parallel problems

• Increasingly used for scientific applications, machine learning:

• Tools such as tensorflow allow to easily swap between cpu  
and gpu backends

• For programming software, 	several competing options:

• CUDA for NVidia

• HIP for AMD

• OpenCL, SYCL: multi-platform

• Movement of data into the gpu and the results back out require careful design.

• HEP software moving towards these, but difficult/labour-intensive to port:

• i.e. Challenges is to write code once, which can be effectively and optimally used on the multiple
architectures of heterogeneous environments

• Increasingly popular for supercomputers etc: pulling HEP that way

35

Source: NVidia

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Parallelism: Summary
• Vectorisation and multi-threading are harder to work with than single-threaded programming

• Necessary if you want to get the highest possible performance

• Even if you don’t need the best performance, you can still apply some of this through libraries

• Compilers will try to optimise your code (but may need some help)

• Programming for heterogeneous environments:

• Active area of study / discussion

36

Runtime measurements
• Simples method to measure runtime: the time command

•  
 
 
 
 

• user = time spent in your code

• sys = time spent in (Linux) kernel code

• real = sum of user + sys, referred to as Walltime  

• You care about real, but you can only affect user 

• If you’re worried about system calls, you can use strace to see  
which ones are used (see e.g Julia Evans strace zine)

37

time factor 1234567890987654321123456789333333333

1234567890987654321123456789333333333: 3 3 3 23 43 27062723775121 1708375824282413291

real	0m0.867s

user	0m0.866s

sys	 0m0.000s

• Walltime is the most important number for
profiling, but also the most difficult to measure
accurately

• Varies with CPU

• Some variation from operating system

• Other running processes can influence the
results

• Penalty if running in a virtual machine

https://jvns.ca/strace-zine-v2.pdf

Sampling profilers
• Often, it’s not the overall time that’s most useful,

• but knowing which calls and sections of your code take the most time.

• Optimise your effort there

• Simplest sampling profiling: the debugger;

• Run your code many times in the debugger and interrupt (i.e. Sample) the code at various points

•

• If your program spends 90% of its time in program X, then your sampling should find it in the call stack 90% of
the time.

• Run your code say 10 times; does it stop in a similar place each time ?

38

Sampling profilers

I Congratulations, you’ve made a basic sampling profiler!
I Sample = interrupt, look at the call stack

^C
Program received signal SIGINT, Interrupt.
0x00007f8d81f09b55 in costlyFunction() ()

from costlyNumerics.so
(gdb) bt
#0 0x00007f8d81f09b55 in costlyFunction() ()

from costlyNumerics.so
#1 0x00007f8d81f0baaa in frameworkCode() ()

from frameworkCode.so
#2 0x00007f8d81f0bc0b in main() ()

from program.so

Stewart Martin-Haugh (STFC RAL) Computing 41 / 67

Sampling profilers

• costlyFunction() (top of the stack trace): where program 
 was when halted

• “Self cost”

• frameworkCall(), main(): call the function doing the work

• “Total cost”

• Self cost ≤ total cost  

• Focus optimisation efforts on functions with highest  
self-cost  

• Fortunately several tools exist to sample and visualise (e.g KCacheGrind) the results in a call graph

• gperftools, Intel VTune, igprof 

39

Sampling profilers

I Congratulations, you’ve made a basic sampling profiler!
I Sample = interrupt, look at the call stack

^C
Program received signal SIGINT, Interrupt.
0x00007f8d81f09b55 in costlyFunction() ()

from costlyNumerics.so
(gdb) bt
#0 0x00007f8d81f09b55 in costlyFunction() ()

from costlyNumerics.so
#1 0x00007f8d81f0baaa in frameworkCode() ()

from frameworkCode.so
#2 0x00007f8d81f0bc0b in main() ()

from program.so

Stewart Martin-Haugh (STFC RAL) Computing 41 / 67

VTune
• Intel VTune is an goof tool

• Free to download, if you  
register with Intel

• Multi-language support;  
CPU, GPU, and FPGA

40

VTune
I Intel VTune is an excellent tool
I Free to download, if you register with Intel

Stewart Martin-Haugh (STFC RAL) Computing 44 / 67

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.2ex4bi

Code Instrumentation
• High-level languages (e.g. C++, Python) have tools to “instrument” code:

• As an example: Adding in timing information for C++

• Carries a performance overhead; not to be used within tight loops

• Google Benchmark builds this into a useful framework to benchmark functions

41

Instrumentation

I High-level languages (e.g. C++) have inbuilt timing facilities:
us ing namespace std ;
us ing namespace std : : chrono ;
auto start_t ime = high_reso lut ion_c lock : : now() ;
doSomething () ;
auto end_time = high_reso lut ion_c lock : : now() ;
cout << ”Time : ␣” << durat ion_cast<microseconds >(end_time −

start_t ime) . count () << endl ;

I Known as “instrumenting” your code
I Useful, but has some cost - don’t e.g. try to measure within tight

loops
I Google Benchmark builds this into a useful framework to benchmark

functions

Stewart Martin-Haugh (STFC RAL) Computing 45 / 67

https://github.com/google/benchmark

Code Instrumentation
• Several tools also available for python: cProfile builtin, e.g.

• Use of Profile class and pstats to update the output and fine tune 
the profiling 

42

10000007 function calls in 2.048 seconds

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.115 0.115 2.048 2.048 <string>:1(<module>)

 1 0.000 0.000 1.933 1.933 test_profile.py:12(run)

 1 1.219 1.219 1.831 1.831 test_profile.py:3(create_array)

 1 0.000 0.000 2.048 2.048 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 {built-in method builtins.print}
 1 0.102 0.102 0.102 0.102 {built-in method builtins.sum}

 10000000 0.612 0.000 0.612 0.000 {method 'append' of 'list' objects}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

import cProfile

def create_array():

 data = []

 for i in range(10000000):

 data.append(i)

 return data

def sum_data(d):

 return sum(d)

def run():

 arr = create_array()

 print(sum(arr))

if __name__ == "__main__":

 cProfile.run('run()')

if __name__ == "__main__":

 import cProfile, pstats

 profiler = cProfile.Profile()

 profiler.enable()

 run()

 profiler.disable()

 stats = pstats.Stats(profiler).sort_stats('tottime')

 stats.print_stats()

 ncalls tot
time

per-
call

cumtim
e

percal
l filename:lineno(function)

1 1.270 1.270 1.909 1.909 test_profile.py:3(create_array)
10000000 0.639 0.000 0.639 0.000 {method 'append' of 'list' objects}

1 0.137 0.137 0.137 0.137 {built-in method builtins.sum}
1 0.000 0.000 0.000 0.000 {built-in method builtins.print}
1 0.000 0.000 2.046 2.046 test_profile.py:12(run)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

Instrumentation
• perf is now the gold standard - sampling and instrumenting

• Part of Linux kernel (best results with new kernels)

• Monitor performance monitoring counters (PMCs)

• VTune also has access to these

• (Some functionality requires root)

43

Instrumentation
I perf is now the gold standard - sampling and instrumenting
I Part of Linux kernel (best results with new kernels)
I Monitor performance monitoring counters (PMCs)
I VTune also has access to these

I Some features require root access
perf stat -d program

10 152 172 182 cycles:u #
3,451 GHz (49,86%)

14 584 154 073 instructions:u #
1,44 insn per cycle (62,43%)

2 318 605 154 branches:u #
788,130 M/sec (74,93%)
44 768 463 branch-misses:u #

1,93% of all branches (75,00%)
4 116 170 377 L1-dcache-loads:u #

1399,150 M/sec (74,18%)
167 821 302 L1-dcache-load-misses:u #

4,08% of all L1-dcache hits (25,06%)
45 252 042 LLC-loads:u #

15,382 M/sec (24,89%)
8 794 669 LLC-load-misses:u #

19,43%
of all LL-cache hits (37,33%)

Stewart Martin-Haugh (STFC RAL) Computing 47 / 67

https://perf.wiki.kernel.org/index.php/Main_Page

Emulation
• Callgrind tool (part of Valgrind)

• (Valgrind is very powerful suite of tools for debugging and profiling (particularly with memory issues).

• Emulates a basic modern CPU, with level 1, level 2 caches, branch  
prediction (somewhat configurable)  

• Runs slowly  

• Information about cache misses and branch misprediction  

• Produces output suitable for KCacheGrind  

44

https://valgrind.org
https://valgrind.org

Compiler optimisation
• Standard compilers (GCC, clang) able to perform significant code optimisations:

• -O0 = no optimisations applied

• -O1, -O2 = basic, safe optimisations applied

• -03 = expensive optimisations (take a long time, may actually make  
code slower) applied  

• -O2 is a good reference level; baseline it, and test against -O3

• Remember to try these optimisation levels, before optimisation by hand.

• Fine-tuned optimisation options available - check GCC/clang documentation for details

• Example: (godbolt)

• Basic optimisation 
level applied at  
compilation:

45

Optimisation example
I GCC and Clang compilers can reduce square example3 down to

something sensible

int square(int n)
{

int k = 0;
while (true)
{

if(k == n*n)
{

return k;
}
k++;

}
}

!
int square2(int n)
{

return n*n;
}

I Optimising compilers are amazing - you only need to care when
automatic optimisation fails

3NB: Don’t write a square function, just square numbers in the code
Stewart Martin-Haugh (STFC RAL) Computing 50 / 67

Optimisation example
I GCC and Clang compilers can reduce square example3 down to

something sensible

int square(int n)
{

int k = 0;
while (true)
{

if(k == n*n)
{

return k;
}
k++;

}
}

!
int square2(int n)
{

return n*n;
}

I Optimising compilers are amazing - you only need to care when
automatic optimisation fails

3NB: Don’t write a square function, just square numbers in the code
Stewart Martin-Haugh (STFC RAL) Computing 50 / 67

https://godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(j:1,source:%E2%80%99int+square(int+n)%0A%7B%0A++int+k+=+0;%0A++while+(true)%0A++%7B%0A++++if(k+==+n*n)%0A++++%7B%0A++++++return+k;%0A++++%7D%0A++++k++;%0A++%7D%0A%7D%0A%0Aint+square2(int+n)%0A%7B%0A++++return+n*n;%0A%7D'),l:'5',n:'0',o:'C+++source+%231',t:'0')),k:49.85950122936425,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((g:!((h:compiler,i:(compiler:g72,filters:(___0:(),b:'0',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',jquery:'3.2.1',length:1,prevObject:(___0:(sizzle1500998781462:(undefined:(legend:!(5,0,'1')))),length:1,prevObject:(___0:(jQuery321084065838076119451:(display:''),sizzle1500998781462:(undefined:(legend:!(5,0,'1')))),length:1)),trim:'0'),libs:!(),options:'-O2',source:1),l:'5',n:'0',o:'x86-64+gcc+7.2+(Editor+%231,+Compiler+%231)',t:'0')),k:37.763272410792,l:'4',m:50,n:'0',o:'',s:0,t:'0'),(g:!((h:compiler,i:(compiler:clang500,filters:(b:'0',binary:'1',commentOnly:'0',demangle:'0',directives:'0',execute:'1',intel:'0',trim:'0'),libs:!(),options:'-O2',source:1),l:'5',n:'0',o:'x86-64+clang+5.0.0+(Editor+%231,+Compiler+%232)',t:'0')),header:(),l:'4',m:50,n:'0',o:'',s:0,t:'0')),k:50.14049877063576,l:'3',n:'0',o:'',t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

Profiling and optimisation: Summary
• Profile helps identify bottlenecks and high ‘cost’ functions in code:

• Measure and benchmark (Also have an understanding of what is ‘good enough’).

• Many profilers available

• Biggest improvements usually will come from changing algorithms, rather than minor changes to code

• Once poor performance locations of code identified, you can decide where to focus your effort:

• (Note - even in some cases, highly optimised code will still take the most time).

• Compiled languages (C++, fortran) faster in general than interpreted (python, ruby).

• Standard libraries exist (FFTW, BLAS, Eigen). Most probably these will be faster than your own implementations:

• Don’t reinvent the wheel.

46

Floating-point and mathematical operations
• General comments:

• Addition is faster than multiplication (Compiler will usually help in these cases)

• Multiplication is faster than division

•

• Rearrange calculations to minimise number of operations

• Compiler won’t necessarily do this for you (floating point rules)

•

• Be very careful about loosing clarity of the function of the code.

• Clear and concise code might be more maintainable / error-free, than slightly more performant implementation.

• Consider if the trade-offs / performance increase is worth it.

• e.g. if it’s really a bottleneck in the code flow

• Square roots are slow

• Trigonometric functions, exp, log are also slow

• Consider using optimised libraries (e.g. VDT), and trig. Identities

• For linear algebra, use a library (e.g Eigen)

Floating-point operations

I Addition is faster than multiplication (usually compiler will do this
for you if needed)

I Multiplication is faster than division

y=x/5.0; //Bad
y=x*0.2; //Good

I Rearrange calculations to minimise number of operations
I Compiler won’t necessarily do this for you (floating point rules)

y = d*x*x*x + c*x*x + b*x + a; //Bad
y = x*(x*(x*d+c)+b) + a; //Good

I Some of these rearrangements lose clarity
I Only do this if it’s genuinely a bottleneck

Stewart Martin-Haugh (STFC RAL) Computing 52 / 67

Floating-point operations

I Addition is faster than multiplication (usually compiler will do this
for you if needed)

I Multiplication is faster than division

y=x/5.0; //Bad
y=x*0.2; //Good

I Rearrange calculations to minimise number of operations
I Compiler won’t necessarily do this for you (floating point rules)

y = d*x*x*x + c*x*x + b*x + a; //Bad
y = x*(x*(x*d+c)+b) + a; //Good

I Some of these rearrangements lose clarity
I Only do this if it’s genuinely a bottleneck

Stewart Martin-Haugh (STFC RAL) Computing 52 / 67

47

Loops and standard algorithms
• Don’t recalculate within a loop,

• Move outside to the outmost possible level

• Consider memory management within loops.

• e.g don’t create a vector<int> within a loop, if you can create outside and reserve enough memory.

• C++ (STL) and python (builtin, numpy) contain well tested / optimised standard algorithms (e.g. std::sort);

• Familiarise yourself with the available ones, and use instead of your own.

• If the algorithm is the bottleneck, consider different options (merge sort, bubble sort, etc …)

48

Loops

I Don’t recalculate within loops: move code outside
I Consider storing frequently calculated values

for (i = 0; i < 50; i++) {
for (j = 0; j < 50; j++) {

x = sin(5*i) + cos(6*j);
//Can move sin() into earlier loop

}
}

Stewart Martin-Haugh (STFC RAL) Computing 54 / 67

Data Structures
• Worth thinking about which data format fits your problem

• In C++, std::vector is probably a good fit in most cases 
(but make sure you reserve enough size in advance!)

• std::map and std::unordered_map are also useful

• Python (and C++):

• Consider whether builtin types are sufficient before creating own types (and sub-classing existing types)

• Designing for data optimisation or object representation ?

49

Other comments
• Optimisation is important; Correctness must come first

• Ensure you understand (and document) any optimisations that are not concise.

• (Might also want to keep the simpler implementation available, to help test for correctness).

• While using ‘standard libraries’ and algorithms are encouraged for ‘production’ work;

• Writing and testing your own implementation remains the best way to learn;

• Even if never deployed.

• Again - Correctness comes first; then strive for optimisations (where meaningful).

50

Memory
• Programs have access to two pools of memory: stack

and heap

• Stack:

• Small amount of memory associated with
program

• Fast to access - can be e.g. in CPU L1 cache

• E.g. variables in a function

•

• Heap:

• Slower to access than stack

• Can be dynamically allocated

• If you don’t free up memory, this is where it
leaks (use … std::unique_ptr)

• All the RAM available on the machine (if it runs
out, it will use hard  
drive - v slow!)

•

Memory 101
Programs have access to two pools of memory: stack and heap
I Stack:

I Small amount of memory associated with program
I Fast to access - can be e.g. in CPU L1 cache
I E.g. variables in a function

int f(int x) {
int i = 55;
return x + i;

}
I Heap:

I Slower to access than stack
I Can be dynamically allocated
I If you don’t free up memory, this is where it leaks
I All the RAM available on the machine (if it runs out, it will use hard

drive - v slow!)
int g(int x) {

int* i = new int(55);//On heap
return x + *i;
//Memory for i not given back to OS - leak

}
Stewart Martin-Haugh (STFC RAL) Computing 58 / 67

Memory 101
Programs have access to two pools of memory: stack and heap
I Stack:

I Small amount of memory associated with program
I Fast to access - can be e.g. in CPU L1 cache
I E.g. variables in a function

int f(int x) {
int i = 55;
return x + i;

}
I Heap:

I Slower to access than stack
I Can be dynamically allocated
I If you don’t free up memory, this is where it leaks
I All the RAM available on the machine (if it runs out, it will use hard

drive - v slow!)
int g(int x) {

int* i = new int(55);//On heap
return x + *i;
//Memory for i not given back to OS - leak

}
Stewart Martin-Haugh (STFC RAL) Computing 58 / 67

51

• Using too much memory is bad:

• Eventually you run out (memory leak) (or using swap)

• Allocating memory has CPU overhead; more so if data doesn’t fit (e.g. for L1 cache).

• A single allocation is cheaper than smaller allocation.

• Better to access memory in order - data-locality

• Appropriate data structures help with this

Memory allocators
• Memory is not necessarily allocated when requested

• Allocator decides how much to request at a time and how much should be contiguous

• glibc by default

• Others available, particularly jemalloc (Facebook) and tcmalloc  
(Google)  

• No need to recompile, just preload  

•

• 	 May work better for your memory access pattern than glibc - free speedup!

• tcmalloc can also provides a printout when large allocations are made: 

• Note that --enable-large-alloc-report must be added to ./configure in recent releases of tcmalloc

Different allocators

I Your program will not just receive the memory it asks for when it
asks for it

I Allocator decides how much to request at a time and how much
should be contiguous

I glibc used by default
I Others available, particularly jemalloc (Facebook) and tcmalloc

(Google)
I No need to recompile, just preload
I May work better for your memory access pattern than glibc - free

speedup!

LD_PRELOAD=/usr/lib/libtcmalloc.so.4 ./my_program

Stewart Martin-Haugh (STFC RAL) Computing 60 / 67

52

Finding big allocations

I Scenario: your program is running out of memory
I How to track down large (e.g. 1 GB) allocations?
I tcmalloc provides a printout when this happens

tcmalloc: large alloc 2720276480 bytes == 0x73eda000 @
tcmalloc: large alloc 2720276480 bytes == 0x2a96f0000 @
tcmalloc: large alloc 2720276480 bytes == 0x34b932000 @

I Add a breakpoint at (anonymous namespace)::ReportLargeAlloc(
unsigned long, void*)4

4Note that --enable-large-alloc-report must be added to ./configure in recent
releases of tcmalloc

Stewart Martin-Haugh (STFC RAL) Computing 61 / 67

Heap profilers
• jemalloc and tcmalloc both come with low-overhead profilers:

• analyse which functions allocate most memory

• Output can be interpreted much as with a call-graph

• Best overall is heaptrack - see e.g. this ATLAS memory fix that it signposted

•

53

Heap profilers
I jemalloc and tcmalloc both come with low-overhead profilers to

analyse which functions allocate most memory
I Output can be interpreted much as with a call-graph
I Best overall is heaptrack - see e.g. this ATLAS memory fix that it

signposted

Stewart Martin-Haugh (STFC RAL) Computing 62 / 67

• Memory profiling is more difficult than CPU
profiling - tools less advanced/convenient

• But improving all the time

• Can make a big difference if you’re using a lot of
memory

 

https://gitlab.cern.ch/atlas/athena/-/merge_requests/43251

Profiling Summary
• Continuing developments, particularly in concurrency and memory safe programming

• Modern C++ (e.g. with std::unique_ptr) providing features to help minimise risks of memory leaks, etc.

• Use them …

• A small amount of profiling/optimisation knowledge can dramatically improve your application performance

• Profiling is more important than optimisation

• Good debugging and profiling skills can help you in a lot of areas throughout your PhD (and beyond)

• Advanced techniques useful once you’ve done the easy bits

• Particularly for C++: see books (e.g. by Herb Sutter, Scott Meyers) and videos (e.g. from CppCon, pyCon)

54

Computing challenges for (HL)-LHC and others
• Modelling of requirements for HL-LHC shows simple scaling of technologies not sufficient to meet needs.

• Software R&D required now to meet these demands and  
optimise for physics exploitation.

55

Preliminary schedule HL-LHC

ATLAS Software and Computing HL-LHC Roadmap, version 2.1

held on disk; and the number of replicas and versions of datasets will be significantly
reduced.

The current model does not attempt to take into account possible further divisions (i.e.
beyond disk and tape) in the storage quality of service provided by the WLCG sites, and it
assumes only CPU resources without accelerators will be available. The uncertainties when
including accelerators in the resource estimate (e.g. speed improvement factors in each
processing step, relative costs of CPU vs accelerator, availability of accelerators on sites)
are too large to make such an exercise useful. As R&D projects conclude and these
uncertainties are reduced, and once the WLCG has undertaken a discussion of the pledge
mechanism for these resources, the model will be extended to include the impact of
accelerators.

Figure 1: projected evolution of compute usage from 2020 until 2036, under the conservative
(blue) and aggressive (red) R&D scenarios. The grey hatched shading between the red and
blue lines illustrates the range of resources consumption if the aggressive scenario is only
partially achieved. The black lines indicate the impact of sustained year-on-year budget
increases, and improvements in new hardware, that together amount to a capacity increase
of 10% (lower line) and 20% (upper line). The vertical shaded bands indicate periods during
which ATLAS will be taking data.

7

ATLAS Software and Computing HL-LHC Roadmap, version 2.1

Figure 3: projection for Run 4 of the breakdown of compute (upper row), disk (middle row)
and tape (lower row) usage, for the conservative (left) and aggressive (right) R&D scenarios.
The expected totals in million HS06*years and exabytes are also displayed.

4. High-level requirements for Run 4
The highest level requirement is that the ATLAS software and computing is ready to process
the HL-LHC data as soon as it arrives in the late 2020s. This means having sufficient proven
storage and compute capacity to handle the data and Monte Carlo production, software that
is capable of fully exploiting the upgraded detector to deliver the performance necessary for
ATLAS to achieve its physics objectives, and analysis tools and infrastructure that enable the
community to fully participate in physics activities. This must take priority over other
requirements, including readiness for heterogeneous architectures and special resources.

9

Overview

● HSF promotes and encourages
common software developments

● Serving the needs of high-energy
and nuclear physics

○ Primary motivation is the physics
programme

○ (HL)-LHC, but also intensity frontier
and nuclear physics programme

○ Software is a key component of our
physics exploitation

○ Consistent with EPPSU

● Involvement from the UK has
been great in the HSF

○ We can always foresee additional
points of contact and interactions

2

FNAL Intensity Frontier

HL-LHC
Schedule

Electron-Ion Collider
Early 2030s

Storage
• CPU is not the only concern,

• Disk space already at a premium,

• Tape used for custodial data

• and for less frequently used data needed in derivation steps

• Run-3 data taking - just starting;

• New smaller data analysis formats for run-3, and prototypes for  
run-4

56

ATLAS Software and Computing HL-LHC Roadmap, version 2.1

Figure 2: projected evolution of disk (top) and tape (bottom) usage from 2020 until 2036,
under the conservative (blue) and aggressive (red) R&D scenarios. The grey hatched
shading between the red and blue lines illustrates the range of resources consumption if the
aggressive scenario is only partially achieved. The black lines indicate the impact of
sustained year-on-year budget increases, and improvements in new hardware, that together
amount to a capacity increase of 10% (lower line) and 20% (upper line). The vertical shaded
bands indicate periods during which ATLAS will be taking data.

8

ATLAS Software and Computing HL-LHC Roadmap, version 2.1

Figure 2: projected evolution of disk (top) and tape (bottom) usage from 2020 until 2036,
under the conservative (blue) and aggressive (red) R&D scenarios. The grey hatched
shading between the red and blue lines illustrates the range of resources consumption if the
aggressive scenario is only partially achieved. The black lines indicate the impact of
sustained year-on-year budget increases, and improvements in new hardware, that together
amount to a capacity increase of 10% (lower line) and 20% (upper line). The vertical shaded
bands indicate periods during which ATLAS will be taking data.

8

ATLAS Software and Computing HL-LHC Roadmap, version 2.1

Figure 3: projection for Run 4 of the breakdown of compute (upper row), disk (middle row)
and tape (lower row) usage, for the conservative (left) and aggressive (right) R&D scenarios.
The expected totals in million HS06*years and exabytes are also displayed.

4. High-level requirements for Run 4
The highest level requirement is that the ATLAS software and computing is ready to process
the HL-LHC data as soon as it arrives in the late 2020s. This means having sufficient proven
storage and compute capacity to handle the data and Monte Carlo production, software that
is capable of fully exploiting the upgraded detector to deliver the performance necessary for
ATLAS to achieve its physics objectives, and analysis tools and infrastructure that enable the
community to fully participate in physics activities. This must take priority over other
requirements, including readiness for heterogeneous architectures and special resources.

9

ATLAS Software and Computing HL-LHC Roadmap, version 2.1

Figure 3: projection for Run 4 of the breakdown of compute (upper row), disk (middle row)
and tape (lower row) usage, for the conservative (left) and aggressive (right) R&D scenarios.
The expected totals in million HS06*years and exabytes are also displayed.

4. High-level requirements for Run 4
The highest level requirement is that the ATLAS software and computing is ready to process
the HL-LHC data as soon as it arrives in the late 2020s. This means having sufficient proven
storage and compute capacity to handle the data and Monte Carlo production, software that
is capable of fully exploiting the upgraded detector to deliver the performance necessary for
ATLAS to achieve its physics objectives, and analysis tools and infrastructure that enable the
community to fully participate in physics activities. This must take priority over other
requirements, including readiness for heterogeneous architectures and special resources.

9

Utilising technologies
• As mentioned at start of the lecture - Clock speed scaling stopped following Moore’s law around 2006

• Limited serial processing options

• Transistor density does however 
appear to continue to follow the trend.

• Memory access can now take  
O(100)’s of clock cycles

• Facilities and capabilities / use cases 
shift towards GPU, FPGA, TPU 
processing:

• Machine learning (and also  
towards differentiable programming)

• Heterogeneity of systems

• HPC sites vs more standard  
‘grid’ architectures.

• Analysis Facilities …
57

Technology Evolution

● Moore’s Law continues to deliver
increases in transistor density

○ Increasingly challenging technical issues, but
there is a roadmap to 2nm by 2025

● Clock speed scaling failed around 2006
○ Limits the capabilities of serial processing

● Memory access times are now ~100s of clock
cycles

● Processing technology evolves from being
solely based on CPUs towards heterogeneity

○ GPUs, FPGAs, TPUs, …
○ This hardware is very much adapted towards different

computing paradigms, machine learning and now
towards differentiable computing

3

NVIDIA Titan V GPU
US$3000, 1.5GHz

K Rupp

Based on material from G. Stewart

https://indico.cern.ch/event/1127798/contributions/4782002/attachments/2413160/4131126/HSF%20and%20R%26D%20Projects%20Update%20-%20SWIFT-HEP%202022-03.pdf

What do we need this code / data for?
• Simplified view of ATLAS processing chain for MC and data

58

EVGEN HITS DigitizationG4-Simulation

RAW/
RDOEvent-Overlay Merged Hits

Byte Stream ConvertersT/DAQ

Reconstruction

ESD

AODDerivation Framework

Monitoring

DxAOD

Histograms

Generator

Physics-Analysis; Athena /
EventLoop

data

application

flow

Markus Elsing

Reconstruction
• “natural” SW organization

• first run detector specific reconstruction algorithms

• for tracks and calorimeter clusters, ...

• then combined reconstruction

• identify physics objects

• based on infrastructure

• common Tools and Services

• e.g. tracking and vertexing tools

• fitting, propagation...

• used in all software layers above

• ~common code base with High Level Trigger

• regional vs full event reconstruction

59

Reconstruction Infrastructure

Vertexing Tools

Event Model

Tracking Tools

Geometry Cond. Services

CalorRec Tools

Detector Reconstruction

Calorimeter MuonsTracker

Combined Reconstruction

e/γ μ jet btag ...

Physics Analysis Tools

Markus Elsing

Reconstruction: Software flow

60

David Rousseau, SW tutorial introduction, July 2008

! Reconstruction data flow
(14.0.0)

• chain of algorithms and data of full reconstruction

• looks more complicated than it is…

• Framework and steering (python) controls the flow and  
specific sets of algorithms  

• can break it up in domains:

• combined reconstruction

• e.g. tracking broken down in a sequence of algorithms

• one does not need to know all the details

• usually work on a specific aspects

Improving framework software
• Previous framework diagram modelled from ATLAS Athena framework without multithreading available

• athenaMT now in production. Schedular allocates algorithms from each event to run at correct moment once
their corresponding inputs are available.

• Significant reduction of memory utilisations with very few  
compromises.

61 https://atlas.cern/updates/briefing/renovating-athena

Th
re

ad
 n

um
be

r

Time

https://atlas.cern/updates/briefing/renovating-athena

Data format evolutions
• ROOT TTree ~ 20 years of usage

• RNtuple aiming as replacement by time of HL-LHC

• Estimations of ~ 3x faster, 10-20% smaller data size, together with better throughputs

62 ROOT2022-Workshop-Overview.pdf

What is RNTuple?

Based on 25+ years of TTree experience, RNTuple is a redesigned I/O subsystem aiming at

• Less disk and CPU usage for the same data content

• 25% smaller files, ◊2–5 better single-core performance
• 10 GB/s per box and 1 GB/s per core sustained end-to-end throughput

(compressed data to histograms)

• Systematic use of exceptions to prevent silent I/O errors

• E�cient support of modern hardware (built for multi-threading and async I/O)

• Native support for object stores (see later)

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

LS 2 LHC Run 3 LS 3 Run 4 (HL-LHC)

RNTuple work in progress in ROOT::Experimental

LS 2

RNTuple goes production, adoption phase

RNTuple – ROOT Workshop 2022 1 / 15

Breakdown of the RNTuple on-disk format

.

Header Page

Cluster

Cluster Group

FooterPage List

struct Event {
int fId;
vector<Particle> fPtcls;

};
struct Particle {

float fE;
vector<int> fIds;

};

Cluster

• Block of consecutive complete events

• Defaults to 50 MB compressed

Page

• Unit of (de-)compression and (un-)packing

• Defaults to 64 kB uncompressed

https://indico.fnal.gov/event/23628/contributions/237933/attachments/154858/201533/ROOT2022-Workshop-Overview.pdf

RNTuple comparisons

63

What are the benefits (I)?

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

kB
 /

ev
en

t

Size on disk, CMS Higgs4Leptons (84 branches)

RNTuple

TTree

Parquet

HDF5/row

HDF5/column

Size on disk, CMS Higgs4Leptons (84 branches) Code

ACAT’21

RNTuple – ROOT Workshop 2022 2 / 15

What are the benefits (II)?

0

0.2

0.4

0.6

0.8

1

un
co

m
pr

es
se

d
G

B
/ s

CMS Higgs4Leptons (10/84 branches)

HDF5 HDF5

SSD Ceph-FS

CMS Higgs4Leptons (10/84 branches)

0

0.5

1

1.5

2

2.5

3

un
co

m
pr

es
se

d
G

B
/ s

 LHCb B2HHH (10/26 branches)

SSD Ceph-FS

RNTuple
TTree
Parquet
HDF5/row
HDF5/column

 LHCb B2HHH (10/26 branches) Code

ACAT’21

RNTuple – ROOT Workshop 2022 3 / 15

What are the benefits (II)?

0

0.2

0.4

0.6

0.8

1

un
co

m
pr

es
se

d
G

B
/ s

CMS Higgs4Leptons (10/84 branches)

HDF5 HDF5

SSD Ceph-FS

CMS Higgs4Leptons (10/84 branches)

0

0.5

1

1.5

2

2.5

3

un
co

m
pr

es
se

d
G

B
/ s

 LHCb B2HHH (10/26 branches)

SSD Ceph-FS

RNTuple
TTree
Parquet
HDF5/row
HDF5/column

 LHCb B2HHH (10/26 branches) Code

ACAT’21

RNTuple – ROOT Workshop 2022 3 / 15

Declarative analysis
• Traditional analysis typically follows event-loop style processing;

• Loop over each event;

• Read in variables of interest

• Make selections;

• Augment data (e.g. new variables)

• Fill histograms / TTrees

• Save output for final analysis / statistical interpretations

• RDataFrame in ROOT allows to state what you want to happen,  
and worry less about how to make it happen.

• Multithreaded support

• Multiple file formats and backend capabilities

• Computational graph structure ensures data is only read as required

• c.f. TTree::Draw() method for constructing several histograms.

• Latest versions of ROOT also to support including systematic variations 
within the computational graph structure of RDataFrame.

64
EPJ Web of Conferences 245, 03009 (2020)

https://doi.org/10.1051/epjconf/202024503009

In this regard, the HEP community is aware of the challenges ahead and it is making
continuous e↵orts to raise awareness that software upgrades have to happen in parallel with
hardware improvements. Such advances in software must be aligned with the volume of
data expected to be produced but also with the fact that software is written by many people
in collaborations, with varying levels of expertise. These issues call for taking advantage
of higher level programming models to increase the productivity of users while delivering
results e�ciently.

This paper describes recent e↵orts towards that goal in ROOT, the most commonly used
software for High Energy Physics (HEP) analysis. Section 2 introduces RDataFrame, a high-
level interface for HEP data processing that allows to deliver multi-threaded analysis on a
single machine. Section 3 introduces PyRDF, a wrapper around RDataFrame that enhances
its functionalities to include data processing on remote and distributed resources. Finally
Section 4 gives a few demonstrations of the capabilities provided by this tool.

2 The HEP DataFrame

ROOT [3] is a scientific software toolkit o↵ering a complete framework and environment for
developing and running physics analysis, and for storing data in an e�cient way. RDataFrame
is one of the latest additions to ROOT, first released with version 6.14 [4].

(a) (b)

Figure 1: Simple operations on a dataset using RDataFrame. (a): analysis code using
PyROOT, ROOT’s Python API. (b): the corresponding computation graph.

With RDataFrame, users can focus on their analysis as a sequence of operations to be
performed on the dataset, while the framework takes care of the management of the loop
over entries as well as low-level details such as IO operations and parallelisation, e↵ectively
creating a computation graph, that is a directed graph where each node corresponds to one
of the operations to be performed on data (see Figure 1). RDataFrame provides methods to
perform most common operations required by ROOT analyses, such as Define to create a
new column in the dataset or Histo1D to create a histogram out of a set of values; at the same
time, users can just as easily specify custom code that will be executed in the event loop via
the Foreach method.

2

EPJ Web of Conferences 245, 03009 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503009

In this regard, the HEP community is aware of the challenges ahead and it is making
continuous e↵orts to raise awareness that software upgrades have to happen in parallel with
hardware improvements. Such advances in software must be aligned with the volume of
data expected to be produced but also with the fact that software is written by many people
in collaborations, with varying levels of expertise. These issues call for taking advantage
of higher level programming models to increase the productivity of users while delivering
results e�ciently.

This paper describes recent e↵orts towards that goal in ROOT, the most commonly used
software for High Energy Physics (HEP) analysis. Section 2 introduces RDataFrame, a high-
level interface for HEP data processing that allows to deliver multi-threaded analysis on a
single machine. Section 3 introduces PyRDF, a wrapper around RDataFrame that enhances
its functionalities to include data processing on remote and distributed resources. Finally
Section 4 gives a few demonstrations of the capabilities provided by this tool.

2 The HEP DataFrame

ROOT [3] is a scientific software toolkit o↵ering a complete framework and environment for
developing and running physics analysis, and for storing data in an e�cient way. RDataFrame
is one of the latest additions to ROOT, first released with version 6.14 [4].

(a) (b)

Figure 1: Simple operations on a dataset using RDataFrame. (a): analysis code using
PyROOT, ROOT’s Python API. (b): the corresponding computation graph.

With RDataFrame, users can focus on their analysis as a sequence of operations to be
performed on the dataset, while the framework takes care of the management of the loop
over entries as well as low-level details such as IO operations and parallelisation, e↵ectively
creating a computation graph, that is a directed graph where each node corresponds to one
of the operations to be performed on data (see Figure 1). RDataFrame provides methods to
perform most common operations required by ROOT analyses, such as Define to create a
new column in the dataset or Histo1D to create a histogram out of a set of values; at the same
time, users can just as easily specify custom code that will be executed in the event loop via
the Foreach method.

2

EPJ Web of Conferences 245, 03009 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503009

Summary
• Computing and data are fundamental to HEP

• Current and future requirements continue to push needed development improvements

• Mulit-threading / processing allows performance scaling beyond clock speed single-core improvements

• Heterogeneous environments and resources

• Machine learning increasingly used.

• Use tests to help:

• Ensure correctness

• Stop bugs reoccurring

• Stop unwanted side effects

• Help aid in the code design (e.g. with test-driven development).

• Use ‘Rubber duck’ philosophy to work through problems

• Profile your code and identify bottlenecks when performance is important:
65

Hands-on

66

Profiling in python
• https://github.com/snafus/OptimisationWorkshop.git

• Requires python 3 and Jupiter notebook

• (Best to run with, e.g. anaconda and/or virtual env)

• Simplest way to run via mybinder:

• mybinder.org link (or just http://cern.ch/go/p7tT)

• Take a simple algorithm to find the number of  
 primes up to some number N.

• Use the ‘play button’ or command-enter 
(alt-enter) to run each cell.

• Work through the cells and try to measure 
the algorithm’s performance and even see 
if you can improve it.

67

https://github.com/snafus/OptimisationWorkshop.git
https://mybinder.org/v2/gh/snafus/OptimisationWorkshop.git/master?labpath=Exercise_PythonNotebook%2FPrimes_Profiling_Introduction.ipynb
http://cern.ch/go/p7tT

