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Introduction
10:30 11:45

Monday 15 October SR SR/EM
November 5 EM EM

Four lectures is clearly not enough to teach special relativity and
electromagnetism.
This course is therefore just a quick run though of the topics. With emphasis
on areas of special relevance for accelerator science.
Online there are Chris Prior’s notes. He used to give the talk and has prepared
some impressive handouts.
For Physicists both SR and EM will be revision; relativistic EM may be new.
For Engineers EM will be revision and SR may be new.
For the new cases I can only introduce the subject and hope you will learn the
relevant areas when you need it.
For the students where this is revision I hope I can introduce a slightly
different, more pictorial approach.
There are multiple books on the both subjects as well as the introduction
sections of books in accelerator science.
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Application of topics in accelerator physics

EM(Maxwell) EM(Lorentz Force) Relativistic EM
Beam dynamics – √ √

Magnet design √ – –
Cavity design √ √ –
Wakefield √ √ √

Plasma Accel √ √ √
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Special Relativity
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Special Relativity

This is crucial for the understanding of beam dynamics.

Even at moderate energies, (a few MeVs) electrons have strong relativistic
effects.

At high energies relativistic effects actually make our life easier. Essentially
the particles stop talking to each other. So we do not need to consider, to the
first approximation, particle-particle interactions.

I shall try to introduce a more pictorial view of special relativity. This
complements the standard undergraduate treatment.
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Spacetime diagrams
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Spacelike path.

Spacetime diagram are brilliant for understanding many problems in SR.

The coordinates are chosen so that lightline are represented at 45◦ degrees.

Particles cannot travel faster than light so much travel more vertical than 45◦.

Their loci are called worldlines.
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Spacetime diagrams
We sometimes need 3 dimensions so that we
can represent 2 dimensions of space and 1
dimension of time.

In this case we can refer to the lightcone.

Causality divides space into three regions.
The inside of the upper cone (and the cone
itself) are all the points which can be
influenced by the event (point) at the origin.
The lower cone are all events which can
influence the origin. All massive particles
which path the origin must have worldlines
inside this double cone.

t

x

y

t

Outside the double cone are not causally connected to the origin.

Sometimes we need to represent all 4 dimensions. (1 time and 3 space)

Sometimes we need to represent 7 dimensions: ????
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Lorentz transformation
This are used to compare event according to two
different observers, moving relative to each other.

Each observer has with them a frame. You may
think of this as arrows representing the directions
of x, y and z as well as a clock representing t.

In accelerator physics this is usually the lab frame
and the rest frame of the particle.

x

t

x′

t′

Using spacetime diagrams we can understand why notions of simultaneity is
not meaningful as well as time dilation and Lorentz contractions.(See
Worksheet.)
If the two observers are not moving relative to each other then the only
difference in their frames is a rotation.
If they are moving relative to each other, then there is a “rotation in
spacetime”. This is usually referred to as a boost.
In usual rotations we preserve length. In Lorentz boosts we must preserve the
speed of light.
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Lorentz transformation
We will use usual units of furlongs and fortnights so that we have to
re-introduce the constant c. What are better units?
Consider a matrix representing a rotation or a boost or both.

ct′

x′

y′

z′

 =

 a 4× 4 Matrix




ct
x
y
z


This encodes the fact that the coordinates (ct′, x′, y′, z′) are linearly related to
(ct, x, y, z)

Show that
(

x′

y′

)
= R

(
x
y

)
preserves length, i.e.

√
x2 + y2 =

√
(x′)2 + (y′)2

if and only if there exists an angle θ such that

R =

(
cos θ − sin θ
sin θ cos θ

)
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Lorentz transformation, γ-factor

Show that
(

ct′

x′

)
= B

(
ct
x

)
preserves the quantity,

(ct)2 − x2 = (ct′)2 − (x′)2

if and only if there exists a hyperbolic angle χ such that

B =

(
coshχ sinhχ
sinhχ coshχ

)
This may also be represented as

B =

(
γ γβ
γβ γ

)
What is the relationship between γ, v, β and χ.

Express γ in terms of β and visa versa. What is the matrix equation satisfied
by B and R.
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4 dimensions
For a boost in all four directions we can write

ct′ = γ(ct − β · x)

x′ = x− β
(
γct − (γ − 1)

β · x
β · β

)
The maximal transformation which obeys the invariant

(ct)2 − x2 − y2 − z2 = (ct′)2 − (x′)2 − (y′)2 − (z′)2

One can use matrix notation. A general transformation is given by 6
parameters, three rotations and three boosts.


ct′

x′

y′

z′

 =


coshχx sinhχx 0 0
sinhχx coshχx 0 0

0 0 1 0
0 0 0 1




coshχy 0 sinhχy 0
0 1 0 0

sinhχy 0 coshχy 0
0 0 0 1




coshχz 0 0 sinhχz
0 1 0 0
0 0 1 0

sinhχz 0 0 coshχz



×


1 0 0 0
0 1 0 0
0 0 cos θ1 − sin θ1
0 0 sin θ1 cos θ1




1 0 0 0
0 1 0 0
0 cos θ2 0 − sin θ2
0 0 1 0
0 sin θ2 0 cos θ2




1 0 0 0
0 1 0 0
0 0 cos θ3 − sin θ3
0 0 sin θ3 cos θ3




ct
x
y
z
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4-vectors and invasions
Let

x =


ct
x
y
z

 , x′ =


ct′

x′

y′

z′

 and G =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Then

(x′)T G x′ = xT G x

where T is the transpose.
Setting Λ equal to the product of the six matrices on the previous slide then

ΛTGΛ = G

Given two 4-vectors x and a then the combination aTGx is invariant under
Lorentz transformation. Why?
We write a : x = aTGx
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4-vectors in SR Mechanics

Let x(τ) be the position of the particle at its proper time τ .

It’s proper time is defined as the time as measured by a clock moving with the
particle.

The particles 4-velocity is given by

v =
dx
dτ

= γ(c, v) = cγ(1, β)

Calculate v : v

Draw the spacetime diagram for a particle and explain why
d

dτ
= γ

d
dt

.

4-Momentum p = m0v, where m0 is the rest mass. (Mass as measured by a
comoving observer).
Some people set m = m0γ and call it the relativistic mass. Energy.

4-Force f =
dp
dτ

show that f = m0γ
(

c
dγ
dt
,

d(γv)

dt

)
.
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Use of invariants: Particle interactions

We can use the 4-momentum and invariants to calculate particle interaction.

Before

p0 = (M0c, 0)

After

p1 = (c−1E1, p)

p2 = (c−1E2,−p)

Consider a single particle of rest mass M0 which disintegrates into two
particle of masses M1 and M2.
Show that the energies are given by

E1 = c2 M2
0 + M2

1 −M2
2

2M0
, E2 = c2 M2

0 −M2
1 + M2

2
2M0

Hint: consider p1 : p2 = p1 : (p0 − p1) = (p0 − p2) : p2 and p1 : p1 = c2M2
1 .
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Use of invariants: Photon Emission
We can show that is it impossible for a particle to emit a single photon.
The 4-momentum of a photon is any 4-vector pγ such that pγ : pγ = 0. I.e. it
has zero rest mass.
Setting pγ = (Eγ/c, p

γ
) then E2

γ = c2 ‖p
γ
‖2

Show that for any timelike 4-vector v one has the identity

pγ : v > 0

Let p0 be the 4-momentum of a particle. Use the above identity to show that
the particle cannot emit a photon and retain its rest mass.
Observe that this means that an electron cannot simply emit a photon, for
example the quantum version of CSR (coherent syncrotron emission).
To emit a photon we must work around the above constraint. Examples
include

The particle is a composite particle and looses mass when it emits a photon.
The particle being bent by a magnetic field, receives a photon from the magnetic
field and emits a photon of radiation.
The particle emits a virtual photon (I.e. with pγ : pγ 6= 0). This only becomes a
real photon when interacting with matter.
Some fudge in numerics.
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Index notation
Once we are used to 4-vectors it is usual to introduce index notation to
4-vectors.
Given a 4-vector, say momentum we introduce

pµ = m0 cγ(1, β) and pµ = m0 cγ(1,−β)

Note the index runs over µ = 0, 1, 2, 3 so that

p0 = m0γc , p1 = m0γcβ1 , p2 = m0γcβ2 , p3 = m0γcβ3

We then write

c2m2
0 = p : p =

3∑
µ=0

pµ pµ = pµ pµ

The last of these is the “Einstein’s summation convention”. Which is an
implicit summation over the index µ = 0, 1, 2, 3. I will not use it here.
The Lorentz transformation of a 4-vector is

p′µ =

3∑
ν=0

Λµνpν
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Electromagnetism

17/32



Electromagnetism
Electromagnetism can be summarised as four equations Maxwell

∇ · B = 0 , ∇× E + ∂t B = 0

∇ · D = ρ , ∇× H − ∂t D = J

and the Lorentz force equation.

f = c q γ(c−1E · β , c−1E + β × B)

where ∂t = ∂
∂t .

Here E is the electric field, B is the magnetic (flux) field, D is the electric
displacement field and H is the (auxiliary) magnetic field.
ρ is the charge density and J is the current density.
f is the 4-force, q is the charge on a point particle.
However there is very little one can do with these equations.
Show conservation of charge

∂tρ+∇ · J = 0

Write down the Lorentz force equations. Show that the Energy equation can
be deduced from the 3–momentum equation.
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Constitutive Relations

We need constitutive relations which relate (D,H) to (E,B). Therefore the
constitutive relations may look something like:

D = Some function
(
E,B, other stuff

)
H = Another function

(
E,B, other stuff

)
Furthermore (ρ, J) are sometimes also dependent on (E,B), for example in a
metal.
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Constitutive Relations
The simplest constitutive relations are those for the vacuum.

D = ε0E and H = 1
µ0

B

In fact ε0 and µ0 are really just a consequence of the choice of units.
If we set c = 1 then we can set D = E and H = B.
For a general media these constitutive relations can be very complicated.
Simple homogeneous non-dispersive isotropic media:

D = εE and H = 1
µB

We call ε the permittivity and µ the permeability.
Simple anisotropic non-dispersive media:

D = εE and H = µ−1B

Magneto electric media

D = εE + αB and H = µ−1 B + β E
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Constitutive Relations
Dispersive media:

D(t, x) =

∫ ∞
0

ε(t − t′) E(t′, x) dt′

In this case we usually write the constitutive relations in frequency space.

D̃(ω, x) = ε̃(ω) Ẽ(ω, x)

Inhomogeneous media

D(t, x) = ε(x) E(t, x)

Spatially dispersive media

D̃(ω, k) = ε̃(ω, k) Ẽ(ω, k)

Spatially dispersive inhomogeneous media ????
Non linear media

D = ε(E) E

Non linear spatially dispersive inhomogeneous media ????????
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Some simple calculations: EM waves

Consider a homogeneous non-dispersive medium given by (ε, µ), which
includes the vacuum, with no charges or currents.

∇× E + µ∂tH = 0 , ∇× H − ε ∂tE = 0 , ∇ · H = 0 , ∇ · E = 0

Show this implies

∇2E − εµ ∂2
t E = 0

This is the wave equation. It can be solved by

Ex(t, z) = Eamp e−iωt+ikz , Hy(t, z) = Hamp e−iωt+ikz

where ω2 = c2
med k2 and cmed = (εµ)−1/2 is the speed of light in the medium.

Draw picture.
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Some simple calculations: Charge in Magnetic field
Consider a particle of mass m0 and charge q, in a uniform magnetic field
E = 0 and B = (0, 0,B).
The Lorentz force equation

m0γc
(dγ

dt
,

d(γβ)

dt

)
= c q γ

(
c−1E · β , c−1E + β × B

)
Hence

m0

(dγ
dt
,

d(γβ)

dt

)
= q

(
0, β × B

)
so γ is constant and

dv
dt

=
q

m0γ
v× B

I.e. the particle undergoes a helical motion in the direction of the magnetic
field, z. Let ρ be the radius of the rotation in (x, y) plane and v⊥ be the its
speed in the (x, y) plane. Then

v⊥m0γ = qρB

The quantity Bρ is called the magnetic rigidity.
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Synchrotrons

set ω as the angular velocity, v⊥ = ω ρ hence

ωm0γ = q B

Explain why a particle in a synchrotron takes longer to go round when its
energy increase.

Explain briefly how a synchrotron works.

24/32



Potentials

We can automatically solve two of Maxwell’s equation by introducing a
4-potential A = (c−1φ,A).
Set

E = −∇φ− ∂tA , B = ∇× A

Show that two of Maxwell’s equation are satisfied.

Write down the remaining two.

What is the gauge freedom?

Lorentz gauge condition:

c−2∂tφ+∇ · A = 0
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Relativistic Maxwell

It turns out that Maxwell’s equations are fully relativistic.

This is not a coincidence. Einstein was motivated to find relativity by looking
at Maxwell’s equations (despite what you may have heard about the aether
and the Michelson-Morley experiment.)

The Lorentz transformation of the electromagnet field is given by

E′‖ = E‖ , E′⊥ = γ
(
E⊥ + cβ × B

)
,

B′‖ = B‖ , B′⊥ = γ
(
B⊥ − c−1β × E

)
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Relativistic Transformation of Fields
Recall

t = γ(t′ + β x′) , x = γ(x′ + β t′) , y = y′ , z = z′

Lorentz transformation of A = (c−1φ,A)

c−1φ′ = γ(c−1φ− β Ax) , A′x = γ(Ax − β c−1φ) ,

A′y = Ay and A′z = Az

Then

B′ = ∇′ × A′

implies

B′z =
∂A′y
∂x′
− ∂A′x
∂y′

=
∂Ay

∂x′
− ∂

∂y′
(
γ(Ax − β c−1φ)

)
=
∂Ay

∂x
∂x
∂x′

+
∂Ay

∂t
∂t
∂x′
− ∂

∂y

(
γ(Ax − β c−1φ)

)
= γ

(
∂Ay

∂x
−
∂Ay

∂y
+ β

(∂Ay

∂t
+ c−1∂φ

∂y

))
= γ

(
Bz + c−1β Ey

)
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Relativistic electromagnetism
What is the 4-vector like quantity which encodes (E,B)?
We introduce the matrix

F =


0 c−1E1 c−1E2 c−1E3

−c−1E1 0 −Bz By

−c−1E2 Bz 0 −Bx

−c−1E3 −By Bx 0


The vacuum matrix equations can now be written

∂Fµν
∂xρ

+
∂Fνρ
∂xµ

+
∂Fρµ
∂xν

= 0 and
3∑

ν=0

∂Fµν
∂xν

= Jµ

where Jµ = (−cρ, J) is the 4-current. The Lorentz force is

fµ =

3∑
ν=0

βν Fνµ

The Lorentz transformation of F is given by

F′µν =

3∑
σ,ρ=0

Λρµ Λσν Fρσ
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Phase velocity and group velocity in a waveguide.

Explain why there is a dispersion relation of the form

ω2 − c2k2 = ω2
0

Draw dispersion plot.

What is the phase velocity and why is it faster than light?

What is the group velocity?
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Radiation from a moving source.
Consider a moving particle with position on spacetime
given by r(τ).

For each point x in spacetime there is a unique τR such
that r(τR) is connected to x via a future pointing
lightlike curve. I.e.(

x− r(τR)
)

:
(
x− r(τR)

)
= 0

This is known as the retarded time. It depends on x so
we can write τR(x).

The potential due to the curve r(τ) is given by the
Liénard-Wiechart Potential

A(x) =
qβ(τR)(

x− r(τR)
)

:β(τR)
=

qβ(τR)

R

where β(τ) = d
dτ r(τ) and R is the spatial distance

between x and the particle in the rest frame of the
particle at the retarded time.

x

r(τ)

r(τR)

x

β(τR)

R

r(τ)

r(τR)
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Radiation from a moving source.

We can directly calculate the corresponding electromagnetic fields.

E =

(
q(n− β)

γ2(1− n · β)3 R2 +
qn×

(
(n− β)× β̇

)
c(1− n · β)3 R

)∣∣∣∣
τR

B = n× E

where

R = ‖x− r‖ and n =
x− r

R

We see there are two terms, the first is called the coulomb term as it falls off
as 1/‖x− r‖2. The second is called the radiation term as it falls of as
1/‖x− r‖. It depends on the acceleration of the particle.
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Pictorial description of Electromagnetism.

Draw Maxwell’s equations in 4-dimensions

Draw Maxwell’s equations in 3+0 dimensions

Draw Maxwell’s equations in 2+1 dimensions
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