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Vector Calculus

For a scalar function ¢(x,y, z,1),

dp Op 0g0> [ Gradient is normal toJ

gradient: Vo = (

Ox’ Oy’ 0z surface ¢ = constant.

For a vector F = (Fl, Fs, Fg):

divergence: V.F = i 4+

. = (O0F3 OFy; 0Fy 0F3 O0Fy; 0F
curl: V/\F_(__E?z’(‘?z el 8y>
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Basic Vector Calculus

V-VAF =0

VAVe =0,

VANAF)=V(V-F)-VF

!S

Vs

-
S

L &

c Y

v O

U o

n_n;h

g_l

| -

Q
2
QO

&
Q
| -
O
()

-

T
1S

()

4

O
)
Vo)

i

i

s
s

'
&
-
o
c
(@)
C
=
=
o
(@
©
| -
)
=
)
=
o

I S

T
O

W o
g

ol

=
s
=

]

NS

2

<=

i
&y

—

Oriented
boundary C



What is Electromagnetism?

The study of Maxwell's equations, devised in 1863 to
represent the relationships between electric and magnetic
fields in the presence of electric charges and currents,
whether steady or rapidly fluctuating, in a vacuum or in
matter.

The equations represent one of the most elegant and
concise way to describe the fundamentals of electricity and
magnetism. They pull together in a consistent way earlier
results known from the work of Gauss, Faraday, Ampére,
Biot, Savart and others.

Remarkably, Maxwell’'s equations are perfectly consistent
with the transformations of special relativity.

Science & Technology
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Maxwell’s Equations

Relate Electric and Magnetic fields generated by
charge and current distributions.

= electric field f
= electric displacement VD=
magnetic field

V

= magnetic flux density

= electric charge density

=LY o O =
|

= current density

o = permeability of free space, 47w 10~ _ _
€0 = permittivity of free space, 8.854 1012 VANH =9y
c = speed of light, 2.99792458 10° N\

In vacuum: D= EOE, B = ,uoﬁ, eopoc® =1




= P
[V'E: %] Maxwell’s 1st Equation

Equivalent to Gauss’ Flux Theorem:

V ‘l? p— fz < Q/C/;/“7‘ Z?(j‘/ ::Q/C/pli° (iEi:::—l—u/Z/)/lg(j‘/ — Eg
€0 €0 €0
Vv S vV

The flux of electric field out of a closed region is proportional to the total
electric charge Q enclosed within the surface.

A point charge g generates an electric field:

—

dA — q T
N E =
\ ' ( 41eg r3

/ 7 \,\ / Poqd— @ // dS: q
° ""\/—»TI\ d7req 2 €0

sphere sphere

Area integral gives a measure of the net charge enclosed; divergence of
the electric field gives the density of the sources.



[V B = 0} Maxwell’s 2"d Equation

Force Vectors & Field Lines
Gauss’ law for magnetism:

V. -B=0 < //é-d§:0

The net magnetic flux out of any
closed surface is zero. Surround a
magnetic dipole with a closed surface.
The magnetic flux directed inward
towards the south pole will equal the
flux outward from the north pole.
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If there were a magnetic monopole
source, this would give a non-zero
integral.
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Gauss’ law for magnetism is then a statement that
There are no magnetic monopoles



S S
— = d - ~ d¢
— QLF-dl=—— B-dS=——
e a=—g|f i
C S
(for a fixed circuit C)
_ S Michael Faraday
The electromotive force round a circuit
e=¢ FE-dl is proportional to the rate of change of flux of

magnetic field & = //5 dl’ through the circuit.

Faraday’s Law is the basis for electric generators. It also
forms the basis for inductors and transformers.
10



[wézuoﬂ : aE} Maxwell’s 4th Equation

2 ot

Originates from Ampere’s (Circuital) Law : | V A B = poj

]{E-df://V/\E-dgzuo//;’-dgzuol
S S

C
Satisfied by the field for a steady line current
André-Marie Ampére (Biot-Savart Law, 1820):

1775-1836 _ I df/\ —
B — Mol "
A7 P

= 1
For a straight line current B = Ho2
27T

Jean-Baptiste Biot
1774-1862
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Displacement Current

- Faraday: vary B-field, generate E-field

«  Maxwell: varying E-field should then produce a B-field, but not covered by
Ampeére’'s Law. s ~
e Apply Ampere to surface 1 (a flat disk):

Surface 1 - Surface 2 the line integral of B = pgl.
’/ e Applied to surface 2, line integral is zero

since no current penetrates the deformed
surface.

\ e In a capacitor,
..... o 4Q B

—p
Current /

Closed loop E=gamdl="4= EOAE
so there is a current density j; = €¢g—— 5
\_ _J

VAB=u(j+34) = No] + €00 5

12



Consistency with Charge Conservation

Charge conservation: From Maxwell's equations:
Total current flowing out of a region Take divergence of (modified) Ampere’s
equals the rate of decrease of charge equation

within the volume.
1 OF

o . d V/\B ,Lboj—l— 28t
J]3-95==g ][] o %

— V.VAB= wV - j+ = 25 (Vﬁ)

o dp 0
@///v.]dvz_///adv :>O_M0VJ+€0MOat<p)

dp

— 0=V_-
]+8t

op

ot =0

— V. ]+
Charge conservation is implicit in Maxwell’s Equations
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Maxwell’s Equations in Vacuum

In vacuum:

—

D = GQE, B = ,uoﬁ, eo,uocz =1

Source-free equations:

V-B=0

—

-~ OB
E —_— =
V ANE + ft_o

Source equations:

v.E- "
€0
., 10B .
VAB—- —— =
2 ot o]

Equivalent integral form (useful for
simple geometries):
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The Man who Changed Everything

James Clerk Maxwell
1831-1879

Maxwell’s Achievements

United electricity, magnetism and
light

First colour photograph

Stimulated creation of information
theory

Laid foundations of Control Theory

and Cybernetics

Introduced statistical methods to
physics

Maxwell’'s “daemon” - first scientific
thought experiment

Used polarised light to reveal strain
patterns in a structure

Use of centrifuge to separate gases




Example: Calculate E from B

d — —
_ 2 [IB.4q
dt// >

]{E.dz

r<<ryp

d
2nrEy = —aTFTQBO sin wt = —7r2 Bow cos wt
1
— FEp = —§Bowr cos wt
B,smwt r<r,
2nrEy = —awro 2 B, sin wt = —TTy 2 Bow cos wt
. 0B
Also from VA E = —— wrgBo
ot — [y = cos wt
2r
VAB = pugj+ i 5_E then gives current density necessary to
2 0t sustain the fields

Science & Technology
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The Betatron

Particles accelerated by the rotational electric

Magnetic

field generated by a time-varying magnetic field flux,

]{E-df

d [[= =
- —— ||B.
if[B a8

— 2mrEy = ——
TriLig dt
f = = "
For circular motion at a constant radius:
2
Y _ B — — L
T er
0 1 dp E 1 do
Ot () er dt r o2rr? dt
(1) =3l

N

\

Generated
E-field

Toroid

Core

Electron Gun

Magnets _

B-field on orbit needs to be one half the average B over the circle. This imposes a limit on the energy
that can be achieved. Nevertheless the constant radius principle is attractive for high energy circular

accelerators.

17



Boundary Conditions |

Maxwell’s equations involving divergence
can be integrated over a small “pillbox”
across the boundary surface

V-B=0 :///v-édv //E-d§:0

— (ﬁ.§+—ﬁ-§—)AS:

:{[ﬁ-ér—j
V-D=p :///V-ﬁdV:/ ﬁ.d§:///pdv

— <ﬁ-5+—ﬁ-5_)AS:aAS

57+
:>Gfi : D} = j where o is the surface charge density
_ 18




Boundary Conditions Il

Maxwell’s equations involving curl can be integrated over a
closed contour close to, and straddling, the boundary surface

L OB
E=_="
v A >

VAFI:5+%—? :>//V/\H ds = Y{H di'= //] dS+—//D 49

:>( t | )Al—>KAl

— + — —
:@ﬁ NH ] = Kj where K is the surface current density
19




Lorentz Force Law

Thought of as a supplement to Maxwell's equations but actually
implicit in relativistic formulation, gives force on a charged particle
moving in an electromagnetic field:

f: q(E + U A E)
For continuous distributions, use force density:

f;l = pE + f/\ B
Relativistic equation of motion:

dP g f o 1dE dp
— 4- tor f = — — = -, —
vector form T — 7( p ,f> 7((: dt’dt)

— 3-vector component: Energy component:

d . - S o L, - dFE d-y
ﬁi—t(mofyv):f:q(E—l—’v/\Bﬂ [v-f:E:mocza

20



Motion in Constant Magnetic Fields

o B : : 0
d—(mofyv) :f:q(E+77/\B) =qu/A\B
i(mofyc2) = U f:qﬁ’-ﬁ/\é:()

\_dt J

From energy equation, y is constant => || is constant

No acceleration with a magnetic field

From momentum equation,

B-

d

dt

(v0) =0 =

d
T qt

(B - )

—

’UII ‘ is constant

—

|7, | also constant

[17| constant and |7| constant}

Science & Technology
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Motion in Constant Magnetic Field
[
d

-\ - >3 ion / i \ ‘
E(mo’Y’U) —dciv N B ——L/*/\/(J
v q 3 / \ N

dt mo7y e (\\/\ : /l
2 \ \
v A,
=52 L _ d U_I_B O&q’bw -
P mo7y 3
mo~yv
—> circular motion with radius p = 0/; =
q
v qB qB
at an angular frequency Ww=-—=—-—="—
P mo7y m
Constant magnetic field gives meyv P
uniform spiral about B with Bp = ==
constant energy. q q

Magnetic Rigidity

22



Motion in Constant Electric Field

d . -
I (mgvv) =qF

S d 2 Et\?
5= (00, 20V ., 4 me [\/1+(qt) 1]

E
~ Ty + = (q_) t> for qFE < mgc
mo

Energy gain is moc*(y — 1) = qE(x — )

\. J

Constant E-field gives uniform acceleration in
straight line

23



Relativistic Transformations of E and B

According to observer O in frame F, particle has velocity v, fields are E and B

and Lorentz force is f = q E + U A B
In Frame F’, particle is at rest and forc |S®Qq E'
Assume measurements give same G band force, so

=q E+ixB

Point charge ¢ at rest in F: % B=0
d1eg 7“3

See a current in F g a field B _HqUxT
A7 13

— — 1 —
Suggests B'=DB - SiUxE
c

Science & Technology
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Relativistic Transformations of E and B

-

/ — — . — — — g
an_ = ’y(EJ_—l-’UXB), |/| = EH
| —
A / _ . _
By, = v{Bo——x) B = 5
N _ )
— T —
Point charge ¢ at rest in F: E=_1 —, =0
deq 3
. 7 X 7 1 .
See a current in F’, giving a field B’ = _/jloq Y >;r =—SUXE
T T c
—»/ — 1 N —
Suggests B =B — —UXE
c
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Potentials

* Magnetic vector potential

V.-B=0 < 34 suchthat B=VAA
 Electric scalar potential

, OB L. 9A
VAE_—E @V/\(EJr(%)—O

<= d¢ such that E = —V¢ —
. Lorentz gauge ¢ — ¢+ f(t), A — A+ Vy

— Use freedom to choose T4V -A=0

OA

ot

25



Electromagnetic 4-Vectors

* Lorentz gauge

1 6(/5
c2 ot

+vd—o—(

1

"

4-gradient V4

 Current 4-vector

0 1, -
‘52_V> (;@A>_Xu.¢

1

4-potential P

3D: | = pU
4D: J = poV = pory(c, V) = (cp,]),
« Continuity equation
Vy-J = (za —V> ep,g) = 5,

where p = pgy

—

+V-5 =0

26



Relativistic Transformation of Potentials

* 4-potential vector: ¢ = (1¢,/T)
C

 Lorentz transformation:

(Lo [+ L o0 0) (1)
C ”Y’U C
A || & 0 0 A,
Al 0 0 1 0 A,
42 )\ o 0 0 1/)\ A )
a I
— Cb/:’Y(Cb_UAx)




Relativistic Transformation of Fields

B} B} DA /
B'=V'NA" = B, = y _ 94
ox’ oy’
_0A,0r 94,0 9 ([, v
- ———— Oz ar ot or oy \'t &
b=al v /) 04, 04, v (04, 09
= (z +ot) BRANEY: Jdy  c? \ Ot oy
_ /,Z _ v
N ) = (B 5B
a )

— — —> — ?7/\E_)
| =B Bi=7<BL— 2 )

— —

_)|/| :EH, ElZ’y(E)J_—F??/\B))
o /




Example: E/M Field of a Single Particle

A charged particle moves along the z-axis of a frame F'.
What fields does an observer P see?

Frame F vV , Frame F'
Observer P @-.. ‘ Origins coincide
............................................ at t=t'=0
chargeq X
P has 0 =z, = y(z, + vt') so x;, = —vt’ and 2z, = 2z, = b
Hence 7, = (— vt’,O,b), so |ZT,| =1 = Vb2 + 022,

where t/ :7( — %) = ~t.

Science & Technology
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v Frame F'

Origins coincide
at t=t'=0

Observer P

14

chargeq X

In the frame of the particle F’, the fields are purely electrostatic, so

= = q —
B=0, FE= X
Amegr’s
qut’ , , qb
— E = — , Bl =0, £, =
v Amregr’3 Y * Admegr’s
e - I
~ - E, = E; - 2 a 2,242\3/2
E| = E|’| 4rreg (b2 + y202¢2)3/
L S S — |bky = 0
4rreg(b? + 202¢2)3/2
\ J




B = B YT
[ |
inE\ p =] T
By = 7<Bl+ c? ) _
J _
\_

B, =0
YU v
poqyvb

4m(b? + 7%2152)3/2/

Note that in the non-relativistic limit v ~ 1,

po qUAT
Arw 7S

—
BN
~

restoring the Biot-Savart law.

Science & Technology
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Electromagnetic Energy

« Rate of doing work on unit volume of a system is

— —

7 f=—7. (pE+5A§) — o7 BE=—]-E

« Substitute for j from Maxwell's equations and re-arrange:

. oD, -
—7-FE =— ANH——) - F
, , oD
. - 9B - 8D . . o
* For linear, non-dispersive media where B = MFI, D =¢E r
—j-E:V-S+m{2(E-D+B-H)} Poynting vector

Science & Technology
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* Integrated over a volume, this represents an energy
conservation law:

— the rate of doing work on a system equals the rate of
increase of stored electromagnetic energy+ rate of energy
flow across boundary.

dt dt/// D+ B ﬁ)dv+//ﬁAFI.d§
/ \

electric + magnetic Poynting vector gives
energy densities of flux of e/m energy
the fields across boundaries

33



Review of Waves

2 1 2
« 1D wave equation is g Z = — g > Wwith general
solution v

w(@,t) = f(vt —x) + g(vt + )

—_— —

« Simple plane wave:
1D:  sin(wt — kx) 3D:  sin(wt —k - )

. 1 0%u
. 3D wave equation: V23i =
v? Ot?
A
a N
2_7T - Wavelength A Crest

Wavelength is A = — - -
‘ k ’ /‘\\Amplituc%\
. W g
Frequency is v = —
: = \/ \/

Trough




Phase and Group Velocities

siafut-kx)

sia (gt-ke)

X
N -~
7\ £\ 7N\
ad / \ | / \
[\ [} / \ Time t
L r . : :
\ "1 ' \ / \ /
—as \ / ' \ / \ /4
- \ / \
Sy ' - L
' X+AX
|
4 ~\ -'\
7\ AN ;
od [ f o) f
/ ' / Time t+At
! 4
/ \ 1
l' .» | ’l.
o/ § /
I \ / / .\
~a - S pa—
- zJ - - n-’ z’ -
tota

Plane wave sin(wt — kx) has constant
phase wt — kx = 1 at peaks

e N
WAt — kAx =0
e v _ACC‘ “
P= Ar 7
S At k )

6 4 V{2l

/.

b

)
—
<

A(k)ei[w(k)t—k:c] dk

Superposition of plane waves. While
shape is relatively undistorted, pulse
travels with the Group Velocity

Ug

_
- dk
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Electromagnetic waves

« Maxwell’s equations predict the existence of electromagnetic waves, later

discovered by Heinrich Hertz.

§ * No charges, no currents: N Y- 3_57 A _8_5\
. 9B ot ot
VA(VAE)=-VA— V-D = 0 3 = 0
( ) 8t N Z )
a —>
— Ot (V 4 B) 3D wave equation:
2 1 2 17 S L, S =
_ o OF i OB @B 0F_ 9B
Ot? Ot? T 0x2 | 0y2 + 9.2 M2
NS 4
4 — — 5 SN[ Similarly for H. A
VA(VAE)=V(V-E)-V°E
Electromagnetic waves travelling with
= 1
— — VzE speed
\_ % €p
\_ Ve J

37



Nature of Electromagnetic Waves

* A general plane wave with angular frequency w travelling in the
direction of the wave vector k£ has the form

[E _ E’Oei(wt—ﬁ-f)’ B — goei(wt—ﬁ-f)]

« Phase wt — k-

—

invariant.

Apply Maxwell’'s equations:

T = 27 X number of waves and so is a Lorentz

( ._’\ / — — — — — —»\
V «— —ik V-E=0= V-B «+— k-E=0=%k-B
8 o

4\ Y — aB — — —
ot . VAE = —— «—— kANFE =wB
N y _ ot )

« Waves are transverse to the direction of propagation; E, B and /Z are

mutually perpendicular

Science & Technology
W@ Facilities Council
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Plane Electromagnetic Wave

Electromagnetic waves transport
energy through empty space, stored in
the propagating electric and magnetic
fields.

o Electric field
Magn.etlc'fleld A A variation
variation Is 4
perpendicular to 4 it |
electric field and A l
i oction of L A T -
direction o ,,,.f'l J ‘ Magnetic field
propagation n P l l l variation
I ’ '
/;-"'
f“m’
| &
|~ A single-frequency electromagnetic wave
o exhibits a sinusoidal variation of electric
_~ and magnetic fields in space.
-“‘—-’f’f

39



Plane Electromagnetic Waves

: : Nz
[:> speed of electromagnetic waves in vacuum is 7= c j

2T
Wavelength A = @

W
Frequency v = —
2T

=

Reminder: The fact that (ut — k - £ is an
invariant tells us that

W =
A= (%F)
. C
is a Lorentz 4-vector, the 4-Frequency vector.

Deduce frequency transforms as
C—

C+ v

W =y(w—7-k) =w

40



Waves in a Conducting Medium

[E _ E_w’oei(wt—lz-zﬁ')’ B’ _ B’Oei(wt—g-f) ]

(Ohm’s Law) For a medium of conductivity o, ; —oF
Modified Maxwell: VAH= j‘+ eﬁ_E — oE + EG_E
ot ot
—ikANH =cE + iweE
2 %
o
Put D= — / AN
We conduction displacement
Dissipation current current
factor

Copper: 0=58x10",e=¢, = D=10"

Teflon: o=3x10",e=2.1¢, = D=257x10""

41



Attenuation in a Good Conductor

—ik NH = 0E + iweE < kANH =iocE — weE = (ic — we)E

. B L . !
Combine with V/\E:—%—t — kANE =wuH
— kA (kEANE) =wpk ANH = wplic — we)E

— (k- EVk — K*E = wu(ioc — we)E

— <k2 = wp(—io + we)> since k- E =0

For a good conductor, D > 1, 0 > we, k? = —iwuo
2

WUo

1
— k=~ #(1—@'):5(1—7;) where § =

is the skin-depth

[Wave—form is 6i(wt—kx) _ 6i(wt—(1—i)az/5) _ e—x/dei(wt—x/é)]
42



Charge Density in a Conducting Material

Inside a conductor (Ohm'’s law) ] =0k

Continuity equation is
dp

— _F E =
i +V. ] 0 <«— 8t+av
= 8p+0 —
ot T el
Solution is [p = poe Y 6]

Charge density decays exponentially with time. For a very good
conductor, charge flows instantly to the surface to form a surface
current density and (for time varying fields) a surface current. Inside a
perfect conductor:

(60 »00) E=H=0

Science & Technology

@ Facilities Council
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A Uniform Perfectly Conducting Guide

Hollow metallic cylinder with perfectly conducting boundary

YI < surfaces

Maxwell’'s equations with time dependence ¢ are:

Z/\ 5 3 - 2F = LR — o

> X .
N 5 — =iwuV N H
| . 9D . = ,
) V/\HzazzweE ) = —w?epE )
2 2 E .
(VP +w e,u){ E }:0 Helmholtz Equation

Assume E(x,y,z,t) = E(x,y)e ™ 7?
H(x,y,z,t) = H(x,y)e(iwt—)/z) Then [v% 4 (w2€,LL _|_,YQ)] { g } —0

v is the propagation constant

Can solve for the fields completely
i Science & Technology
in terms of EZ and HZ @ Facilities Council 45



A simple model: “Parallel Plate Waveguide”

Transport between two infinite conducting plates (TEy, mode):

E = (0,1,0)E(z)e*'™7% where E satisfies

2 d*E 2 2 2 2
Vikh = — =—-K°F, K= =weu +~~.
dx?

with solution ¥ = A cos Kx or

To satisfy boundary conditions: £ =0on x =0 and x = a.

nmw
— E =Asin Kz, with(tK = K, = —, n integer
a

Propagation constant is

2
Ky
fy:\/K%—wQe,u:n—ﬂ 1—(i> , We =
a We

Science & Technology
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Cut-off Frequency,

2
nm W . NAT . nm
= —4/1-(—=), E=sin—e“* (.=
a We a a/€f

= <o, gives real solution for y, so attenuation
only. No wave propagates: cut-off modes. Y B —

= >0, gives purely imaginary solution for v,
and a wave propagates without attenuation.

vk k= va(e? — )t =y (1- %)

" For a given frequency ® only a finite number of | [ | |

N[

modes can propagate. "
nm aw _ .
W > We = = n < —, /E,U For a given frequency, convenient to
VAT = m choose a so that only mode n = 1 prop-
agates.

Science & Technology
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Phase and Group Velocities

Wave number

Wavelength

Phase velocity

Group velocity

k:\/@(cf—wg)% < WA/€ElL

27 27
A= > : » free-space wavelength

k Wy/ELL

~ > ! » larger than free-space
’Up = — a -

ko /e velocity

dw k 1

k2:e,u(w2—wg) — Vg = 7 = — <

dk  wep NG

» smaller than free-
space velocity

Science & Technology
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Ca

Iculation of Wave Properties

« If a = 3 cm, cut-off frequency of lowest order mode is

fe
- At

c 1 103
_ We - 3 x 10 ~ 5 Gy v, — N
27 2a./ep 2 x0.03 T

7 GHz, only the n=1 mode propagates and

-

-

1
Ve (w? — w?)? ~ 2m(72 — 52)2 x 10°/3 x 108 = 103 m ™

~

50



Flow of EM Energy along the Guide

« Fields (w>w,) are:

E,=F,=0, E,=Asin e cos(wt — kz)
a
k
Hy=—-—F, H,=0 H,= AT s T sin(wt — kz)
Wik aw i a

. . 1
« Time averaged energies: (sin®wt) = (cos® wt) = 5 (sinwt cos wt) = 0

1 ¢S 1
Electric energy: W, = ZE/ |E|? do = éeAQa
0

1 a . 1 2 ]C 2
Magnetic energy: Wi = —,u/ |H|? de = —uA?a { (n_w) 4+ (_> }
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Flow of E/M Energy

- Poynting vector: S=FEAH=(E,H,,0,~E,H,)

- 1 kA? NTE
e Ti : S 0,0,1)—— sin® —=
Time averaged: (95) = 2( ) o sin” —

1 kA2
* Integrate overx: (5,)=-—a Total e/m energy

4 wp density

1 2

* S0 energy is transported at a rate: W= ed%

(59 k.

We+ W,  weu

Electromagnetic energy is transported down the waveguide
with the group velocity nology
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