

Potential for UK interest in Muon Collider RF

RF vacuum surfaces in strong magnetic fields

Background

- Vacuum breakdown (DC and RF) have been subject to much research
 - Complex physics (and wide range of experimental parameters) makes comprehensive understanding difficult
 - Significant commonality observed between DC and RF behaviours
- Gradients of many 10's MV/m are regularly achieved with well prepared surfaces
- Adding magnetic fields regularly reduces achievable gradients
- Muon accelerators require cooling channels immersed in strong magnetic fields
 - Alternating sections of deceleration and acceleration required to manage phase space
 - Strong focussing required in deceleration sections to ensure cooling dominates heating

Background

- In RF discharges B –fields have been noted to
 - Increase dark current
 - Require re-conditioning of cavities
 - May inhibit conditioning and limit peak E field
 - Increase risk of sparking
- In DC Vacuum breakdown, B fields have been noted to improve diode insulation BUT also:
 - Increase number of active emission sites
 - Suppression of the screening effect
 - Enhance optical emissions from the cathode flare plasma
 - Suppress cathode polishing in short pulse driven systems

Processes

- Various authors have contributed to a range of possible mechanisms
 - Norem et al and Mesyats et al have particularly contributed to RF and DC breakdown models
- Focussing of beams resulting in localised heating on anode surface
 - Resulting in localised deterioration in anode which may contribute to emission in reverse cycle
 - Stratakis et al, NIMA 2010, Insepov and Norem J. Vac Sci. Tech. 2013
- Additional magnetic pressure effects on emission sites
 - Leading to enhanced mechanical/thermal failure
 - Moretti et al PRSTAB 2005, Norem et al PRSTAB 2003
- Formation of unipolar arcs
 - Cathode flares formed on single electrode
 - Insepov and Norem J. Vac Sci. Tech. 2013, Mesyats et al (various)
 - Complex cooling dynamics in magnetically confined scenarios

State of the Art

- Bowring et al (PRAB 2020) demonstrated 50 MV/m @ 805 MHz & 3 T
 - Used Be surfaces predicted to be more resilient to thermal excursions caused by magnetically confined beams
- Torun et al demonstrated ~16 MV/m @ 201 MHz with fringing B fields
 - Copper cavity with Be ptl windows
 - Copper prepared using polishing techniques
 - TiN coating of critical areas (including couplers)
- Bowring notes more evidence required to robustly demonstrate heating model explanation
 - Scope to extend research to cover additional materials with different thermal responses
 - Also notes open nature of the physical cause of breakdown events

Links to DC Vacuum Spark Dynamics

- Spark et al investigated high PRF cathode erosion in vacuum sparks
 - Showed sensitivity of 'critical field' and 'cathode polishing' of knife edge emitters to B-field

Links to DC Vacuum Spark Dynamics

- Ronald et al investigated pulsed vacuum sparks
 - Showed sensitivity of cathode flare plasma (distribution and intensity) to B-field in knife edge emitters

Motivation

- Muon accelerators highlighted in 2020 European strategy update
- Muon collider collaboration formed under CERN leadership
 - Motivates fundamental and underpinning research
- MAP and MICE research highlighted complex interactions between cavity breakdown/dark current and B fields
 - Opportunity for fundamental research building on this work
 - Study surface / breakdown physics over a range in:
 - Frequency;
 - magnetic field (magnitude/polarisation);
 - surface preparation.
 - Impact in accelerator physics, vacuum electronics and potentially wider.

Engagement potential?

- Equipment availability:
 - Powerful RF/microwave systems, 1-100GHz;
 - Realistically minimum frequency ~ 3GHz, except possibly at RAL
 - Graeme Burt (Lancaster) working with Daresbury on cavity test facility
 - Potential to include magnetic fields but only NC SC not feasible in sensible timeframe – needs some thought
 - Complement existing US research at 201 and 805 MHz; Planned Saclay initiative
 - Extend range as underpinning basic physics research
- Interest in Strathclyde and Lancaster
- Opportunity for international collaboration
 - E.g. Saclay initiative
 - Extension of FNAL:MTA research
- Opportunity for cross disciplinary impacts and application pull through

High Efficiency RF Drive Amplifiers

HE-Klystron activities

Under development for LHC

The Cockcroft Institute of Accelerator Science and Technology

- will give the LHC a higher power overhead to cope with transients
- Lancaster chose the core stabilization method to achieve high efficiency for this requirement
- For other applications alternative models may be relevant

Project	$pprox \eta$	Technology	Design status	System status	Industrial partner	Prototype schedule
LHC 400 MHz, 350 kW CW	70% *)	CSM	completed	ongoing	Thales	18 months
FCC 400 MHz 600 kW CW	88%	TS MBK or CSM	ongoing		Thales?	36 months
FCC 800 MHz 1.3 MW CW	88%	TS MBK or CSM	ongoing		Thales?	
ILC 1.3 GHz 10 MW pulsed	85%	TS MBK	completed		Thales/Canon/CPI	
CLIC 1 GHz 24 MW pulsed	85%	TS MBK	completed		Thales/Canon/CPI	
X-band 8 MW pulsed	56%*)	СОМ	completed	completed	Canon	12 months
X-band 50 MW pulsed	70%*)	СОМ	completed	completed	CPI	24 months
36 GHz 2.5 MW	35%	HOM MBK	completed	completed	On hold	

Two-Stage Multi Beam Klystron (TS MBK) technology (CLIC & FCC).

Specific features

- 1. Bunching at a low voltage (high perveance). Very **compact RF bunching circuit.**
- Bunched beam acceleration and cooling (reducing △p/p) along the short DC voltage post-accelerating gap.
- 3. Final power extraction from high voltage (low perveance) beam. **High** efficiency.
- Additional advantages:
- 1. The second HV stage can be operated in DC mode. Thus simplifying the modulator topology (cost/volume) and increasing the modulator efficiency (in pulsed mode).
- 2. Simplified feedback for the first stage pulsed voltage. Improved klystron RF phase and amplitude stability.
- 3. Gap's accelerating DC voltage is a natural barrier for reflected electrons. Improved tube stability.

Commercial HE MBK

Efficiency 70%

Г

 $V_1 + V_2$

HOM MBK for Ka-band

RF Source	Klystron	
Beam Voltage	60	kV
Beam Current	120	A
Efficiency	35	%
Bandwidth	50	MHz
Repitition rate	1	kHz
Magnetic field	0.55	Т
Magnet diameter	33	cm
Oil tank required?	No	
Length	37	cm
Phase stability @ 100 ppm mod. Stab.	0.38	deg
Amplitude stability	1	%
Output Power	2.5	MW

TM_{20,1} mode chosen for a 20 beam MBK Couple via an external waveguide wrapped around the inside of the cavity fed to two feed waveguides

37 cm

• There is some beam interception in the last cell so a higher magnetic field is required. We find 0.55 T gives an efficiency above 35% while limiting beam loss.

Opportunity

- Muon Collider Needs
 - Depending on scheme....
 - Drive proton linac 402.5/805 MHz or 352/704MHz or 325/650MHz
 - Muon Cooling 325/650MHz or 352/704MHz
 - Main MC accelerator these plus possibly 1300MHz
 - High efficiency drivers critical to overall system budget
 - Can also be expected to enhance tube reliability or performance
 - Current η~50-64% (occasionally 70%)
- Opportunity to refine klystron designs for new performance points
 - Higher power
 - Pulsed operation

