Ionisation Cooling and Demonstrator

Science & Technology Facilities Council ISIS Neutron and Muon Source

C. T. Rogers ISIS Rutherford Appleton Laboratory

Muon Collider Facility

- Reminder muon source:
 - Protons on target in high-field solenoid \rightarrow pions, muons et al.
 - Clean up beam impurities
 - Capture muons longitudinally
 - Separate into positive and negative muons
 - Transverse and longitudinal "6D rectilinear cooling"
 - Bunch merge
 - More 6D rectilinear cooling
 - Transverse-only "final cooling"

Cooling priorities

- Two areas identified as high priority
 - 6D cooling \rightarrow seek to demonstrate experimentally
 - Final cooling \rightarrow drives facility performance
- UK has leadership
 - Neutrino factory studies
 - MICE
- In particular, seek to deliver
 - 6D cooling
 - Leads to demonstrator facility design
 - Frictional cooling
 - Potential to tie in to ISIS muon production

4D Ionisation Cooling

- Beam loses energy in absorbing material
 - Absorber removes momentum in all directions
 - RF cavity replaces momentum only in longitudinal direction
 - End up with beam that is more straight
- Multiple Coulomb scattering from nucleus ruins the effect
 - Mitigate with tight focussing
 - Mitigate with low-Z materials
 - Equilibrium emittance where MCS completely cancels the cooling

6D Ionisation Cooling

Initial beam is narrow with some momentum spread

- Low transverse emittance and high longitudinal emittance
- Beam follows curved trajectory in dipole
 - Higher momentum particles have higher radius trajectory
 - Beam leaves wider with energy-position correlation
- Beam goes through wedge shaped absorber
 - Beam leaves wider without energy-position correlation
 - High transverse emittance and low longitudinal emittance

Muon Cooling

6D Cooling (MAP)

- Needs integration with the overall muon source scheme
- Needs further optimisation (e.g. matching not well-done)

Cooling Demonstrator - Aims

- Headlines
 - Demonstrate 6D Cooling
 - Demonstrate reacceleration
 - Demonstrate cooling at low emittance
- Other things to look at:
 - Engineering integration
 - Demonstrate high-gradient RF cavity in magnetic field
 - Beam optics understanding
 - Integration of high-field magnets and short cells
 - Absorber infrastructure, potentially IH2
 - Matching into cooling cells
 - Vacuum
 - Alignment and correction
- To support this
 - Target and collimation work
 - Beam diagnostics with potentially low muon rate

Cooling Demonstrator - Studies

- Starting to do optics layout
 - Collimation system
 - Consider compatibility with nuSTORM
 - Cooling

Cooling channel concept

- Ongoing discussion:
 - What should be the peak field?
 - Lowest emittance @ 13 T
 - ~9 T may be cheaper
 - It is an MRI field
 - Needs consideration
- Plan for ~ 10 cryostats
 - Each containing ~ 5 cells
- Lattice well-established
 - Needs optimisation
 - Needs modification/engineering

6D Cooling performance

- Collimation system requirement
 - Emittance ~ 0.5 2 mm transverse
 - Emittance ~ 2 4 mm longitudinal (650 MHz RF)
- Matching (not studied yet)

Collimation System Layout

Overall layout - Rui Ximenes (CERN)

Issues: Large cavern Challenge to deliver services Near-surface solution under investigation

MUC Demonstrator VERY Conceptual layout → To be taken with a "grain of salt"

CERN TT10 branch

- Hope to deliver baseline layout and performance estimates
- Look at options
 - How much can we test different optics?
 - How much can we test different hardware (absorbers, etc)?
 - Diagnostics (INFN)
- RF test stand (Saclay)
 - Demonstrate high RF gradient in magnetic fields
 - Saclay has RF power but needs large bore magnet
 - Potential to use MICE focus coil magnet?
- Prototype cooling test stand

Frictional Cooling

- Final cooling scheme works at low energy
 - More focusing → better transverse cooling
 - Longitudinal emittance growth → heating
- Frictional cooling can get better focusing without emittance growth
- Frictional cooling can be valuable for muon production at ISIS

Frictional Cooling

- Advantages
 - Reduction in energy spread appears naturally
 - Extremely strong focussing available even for conventional magnet fields

$$\varepsilon_{N,\min} \cong \frac{\beta_T (E_s)^2}{2g_t \beta m_\mu c^2 L_R (dE_\mu/ds)}$$

- Challenges
 - Energy acceptance less than 1 MeV
 - Manage time spread of beam
 - Non-relativistic
 - Any scheme must maintain transverse acceptance
 - Manage muon decays
- Previously looked at in terms of muon collider but not in combination with full cooling scheme (as far as I can tell)
 - This would make a good "final cooling" system

PSI scheme

- Transverse emittance reduction arrangement
 - In vacuum → cycloidal motion
 - In material → motion towards middle of device
- PSI planning to implement this scheme for their muon beamline
 - ISIS muons also interested
- Note other schemes have been proposed

Taqqu, PRL, 2006 Papa et al, PRL, 2014 Papa et al, PRL, 2020

Frictional Cooling

- Open questions (muon collider)
 - Does the PSI scheme yield sufficient acceptance?
 - Can it be adapted to increase acceptance?
 - Can it give a short pulse of muons suitable for reacceleration?
- Open questions (ISIS)
 - Is the efficiency good enough?
 - Does it generate too long pulse for ISIS?
- We should investigate
 - We should exploit the synergy!

Conclusions

- Fantastic opportunities in the muon cooling area
- Take leadership for the muon cooling demonstrator
 - Deliver optics layout
 - Participate in RF test programme
 - Loan of MICE focus coil would be a cheap way to contribute
 - Eventually, help build prototype demonstrator cells
 - Can share a muon source with nuSTORM
- Develop frictional cooling
 - Great opportunity to work with ISIS
 - Can be a "game changer" for the muon collider

