

Muon Collider Detector

Material from (in no particular order): D. Lucchesi, D. Buttazzo, P. Maede, N. Pastrone, F. Collamati, C. Curatolo, A. Mereghetti, P. Sala, L. Sestini, M. Casarsa, N. Bartosik, C. Aime`, C. Riccardi, P. Salvini, I. Vai, N. Valle, L. Buonincontri, L. Giambastiani, G. Dal Molin, R. Venditti, M. Mastrapasqua

Alessandro Cerri

UNIVERSITY OF SUSSEX

Physics Motivation

HE Muon collider described as "simply a dream machine":

- Direct searches (pair production, VBF, resonances, DM, ...)
- High-rate measurements (single H, self coupling, rare H decays, top,)
- High energy probes (di- and tri-boson, di-fermion, EFT, compositeness...)
- Muon physics (LFU, b \rightarrow sµµ, g-2, ...)

Exciting new perspective in the collider landscape, and great interest from the theory community!

 307.04743
 2005.10289
 2008.12204
 2012.11555
 2102.11292
 2104.05720

 301.06150
 2006.16277
 2009.11287
 2101.10334
 2103.01617
 etc ...

 303.13628
 2007.14300
 2012.02769
 2102.08386
 2103.14043

lit's Competitive:

<i>к</i> -0	HL-LHC	LHeC	HE-	LHC		ILC			CLIC		CEPC	FC	C-ee	FCC-ee/	$\mu^+\mu^-$
fit			S2	S2'	250	500	1000	380	1500	3000		240	365	$\rm eh/hh$	10000
$\kappa_W \ [\%]$	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14	0.06
$\kappa_Z \ [\%]$	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12	0.23
$\kappa_g \ [\%]$	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49	0.15
κ_{γ} [%]	1.9	7.6	1.6	1.2	6.7	3.4	1.9	$98\star$	5.0	2.2	3.7	4.7	3.9	0.29	0.64
$\kappa_{Z\gamma}$ [%]	10.	_	5.7	3.8	$99\star$	$86\star$	$85\star$	$120\star$	15	6.9	8.2	$81\star$	$75\star$	0.69	1.0
$\kappa_c \ [\%]$	—	4.1	—	—	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95	0.89
$\kappa_t \ [\%]$	3.3	—	2.8	1.7	—	6.9	1.6	_	_	2.7	_	_	_	1.0	6.0
$\kappa_b \ [\%]$	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43	0.16
κ_{μ} [%]	4.6	—	2.5	1.7	15	9.4	6.2	$320\star$	13	5.8	8.9	10	8.9	0.41	2.0
κ_{τ} [%]	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44	0.31

Abstract

We lay out a comprehensive physics case for a future high-energy muon collider, exploring a range of collision energies (from 1 to 100 TeV) and luminosities. We highlight the advantages of such a collider over proposed alternatives. We show how one can leverage both the point-like nature of the muons themselves as well as the cloud of electroweak radiation that surrounds the beam to blur the dichotomy between energy and precision in the search for new physics. The physics case is buttressed by a range of studies with applications to electroweak symmetry breaking, dark matter, and the naturalness of the weak scale. Furthermore, we make sharp connections with complementary experiments that are probing new physics effects using electric dipole moments, flavor violation, and gravitational waves. An extensive appendix provides cross section predictions as a function of the center-of-mass energy for many canonical simplified models.

5	Cor	npleme	nt	a	ri	ty												
	5.1	EDMs																
	5.2	Flavor																

5.1	EDMs	58
5.2	Flavor	60
5.3	Gravitational waves	67

Muon collider as potential direct probe of indirect signals from EDM, Flavour, Gravitational Waves...

...and complementary!

		$N_{ m post-cuts}$		
\sqrt{s} (TeV)	$\mu^+\mu^- \to \mu\tau$	$\mu^+\mu^- o \mu au u_\mu u_ au$	$\mu^+\mu^- \to \tau^+\tau^-$	
.125	0.0948	30.8	3.42×10^4	a
3	53.3	6.32×10^3	40.4	Xiv 2
6	212	$3.26 imes 10^3$	9.52	103.
14	1.14×10^3	$1.14 imes 10^3$	0.138	1402
100	5.73×10^4	60.9	0.0312	τ α

Table 5: Number of signal and background events after kinematic cuts and estimating the loss of signal efficiency due to initial state radiation for 1 ab⁻¹ of data and $c^{\tau 3\mu}/\Lambda^2 = 1/(50 \text{ TeV})^2$. Δ

Challenges for a Muon Collider Detector

Prototypical machine design to deliver:

- 1 bunch/beam
- Collision spacing: 10 / 15 µs @ 1.5 / 3 TeV
- $\sigma_{\rm z}$ ~10 / 5 mm @ 1.5 / 3 TeV
- Beam Induced Background:
 - Muon decays 4E5 decays/m/crossing at 3 TeV
 - Tertiary muons produced far from collision points
 - Showers from final triplets

Baseline Detector Model

optimization @1.5 [3] TeV

- CLIC baseline detector model model
- MAP-designed MDI and vertex detector

A. Cerri - U. of Sussex

Tracker [1.5 TeV]

Main focus on BIB effects:

- Design avoids "hottest" BIB regions
- Readout timing window tuned to exclude out of time BIB
- Granularity tuned to $\leq 1\%$ occupancy
- Additional expedients under study against BIB:
 - Cluster shape
 - Use of PV for angular matching of doublets
- What about secondary vertices and LLP?

Calorimeters

- BIB deposits large amounts of energy ٠ both in EM and Hadr. Calorimeters
- Timing and shower profile allow in • principle to distinguish:

Computational (& DAQ?) challenge in efficient separation from **BIB** background!

1800

Muon Detectors

BIB particles flux [Hz/cm²] in different regions (bunch crossing time 10 μ s):

- Several detector technologies explored
- BIB not a performance issue of properly handled

_50 ^E	Particle	Endcap (θ >12°)	Endcap (8° < θ < 12°)	Endcap (θ < 8°)	Barrel
	neutrons	1.2 · 10 ³	5 · 10 ⁴	1.2 · 10 ⁶	1.4 · 10 ²
	photons	6.2 · 10 ²	1 · 10 ⁴	7.2 · 10 ⁵	5
	protons	16	3 · 10 ²	2.4 · 10 ⁴	
	µ+ µ-	3	3.7 · 10 ²	1.2 · 10 ⁴	
	pions, kaons	< 1	70	1 · 10 ³	
	e+ e-	3	3.3 · 10 ²	5 · 10 ³	< 1
	Total	≈ 2 kHz/cm ²	≈ 60 kHz/cm ²	≈ 2 MHz/cm ²	≈ 200 Hz/cm ²

Muon Collider 1.5 TeV - Photon Hit Rate vs θ

Tracking and Jet reconstruction performance

- Efficiency drops in nozzle region
- Resolution
 degrades too

Need further optimization of detectors and algorithms!

B-jets and Secondary Vertex Reconstruction

B-jet ID

- Regional-tracking selected tracks
- Early steps towards b-tagging *work*in*progress*
 - ML approach under study

Muon Reconstruction

27 Sept. 2021

Beyond "detector performance"

As detector design and simulation mature, detailed physics studies become possible

 Growing engagement within the Snowmass process

EPS20	21 Posters and Talks y 13 Jul 2021, 09:00 \rightarrow 19:00 Europe/Zurich	R-
09:00 → 09:20	Dark-SUSY channels to study muon reconstruction performance at the Muon Speaker: Chiara Aime' (Pavia University and INFN (IT)) Poster_EPS.pdf	© 20m 🖉 -
09:20 → 09:40	Design a calorimeter system for the Muon Collider experiment Speaker: Lorenzo Sestini (Universita e INFN, Padova (IT)) Poster_mucoll_calo	© 20m 2 -
09:40 → 10:00	Prospects for the measurement of oH x BR($H \rightarrow \mu\mu$) at a 3-TeV muon collider Speaker: Alessandro Montella (University of Trieste and INFN-Trieste) Immur_mucoll_eps	© 20m 2 -
10:00 → 10:20	Study of Beam Induced background at muon collider Speaker: Francesco Collamati (INFN Roma I (IT))	③20m 🖉 -
10:20 → 10:40	Tracking and track reconstruction at a muon collider in the presence of beam-induced background Speaker: Hannsjorg Weber (Humboldt University of Berlin (DE)) Phaweber_EPS2021	© 20m ∠ -
10:40 → 11:00	Tracking with ACTS for a Muon Collider detector Speaker: Karol Krizka (Lawrence Berkeley National Lab. (US))	© 20m
11:00 → 11:20	Using cluster shape for beam-background suppression in a future muon collider experiment Speaker: Elodie Deborah Resseguie (Lawrence Berkeley National Lab. (US)) MuCoLEPS2021_er	© 20m 🖉 -
11:20 → 11:40	Higgs boson couplings at muon collider (talk) Speaker: Laura Buonincontri (Universita e INFN, Padova (IT))	© 20m ∠ •
11:40 → 12:00	Muon reconstruction performance and detector-design considerations for a Muon Collider (Talk) Speaker: Ilaria Vai (Pavia University and INFN (IT)) BEPSHEP2021_Ilaria_	© 20m ∠ -

Summary

The Muon Collider appeal:

- Exciting physics potential
- Novelty of approach
- Complementarity to other future technologies
- ...but also an exciting detector and DAQ R&D challenge!

Early detector design under study:

- CLIC inspired
- BIB driven
- Exciting challenge:
 - Detector technology
 - DAQ and data handling
 - Computing