The search for electric dipole moments of charged particles using storage rings

Paolo Lenisa

University of Ferrara and INFN, Italy

RAL, August 4th 2021

Motivation

Physics case

Problems

- Preponderance of matter over antimatter
- Nature of Dark Matter (DM)

Physics case

Problems

- Preponderance of matter over antimatter
- Nature of Dark Matter (DM)

Approach

- Measurements of static Electric Dipole Moments (EDM) of fundamental particles.
- Searches for axion-like particles as DM candidates through oscillating EDM

Electric Dipole Moment (EDM)

- Permanent separation of + and charge
- Fundamental property of particles (like magnetic moment, mass, charge)
- Possible via violation of time-reversal (T) and parity (P)

Electric Dipole Moment (EDM)

- Permanent separation of + and charge
- Fundamental property of particles (like magnetic moment, mass, charge)
- Possible via violation of time-reversal (T) and parity (P)
- Nothing to do with electric dipole moments observed in some molecules (e.g. H₂O molecule)

T and P violation of EDM

$$H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} - d\frac{\vec{s}}{s} \cdot \vec{E}$$

• T: $H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} + d\frac{\vec{s}}{s} \cdot \vec{E}$
• P: $H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} + d\frac{\vec{s}}{s} \cdot \vec{E}$

T and P violation of EDM

$$H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} - d\frac{\vec{s}}{s} \cdot \vec{E}$$

• T: $H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} + d\frac{\vec{s}}{s} \cdot \vec{E}$
• P: $H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} + d\frac{\vec{s}}{s} \cdot \vec{E}$

EDM meas. test violation of P and T symmetries $(\stackrel{CPT}{=} CP)$

	-
Lonica /	Eorrara
Leinsai	ii eilaia

CP-violation & Matter-Antimatter Asymmetry

Matter dominance:

Excess of Matter in the Universe:

$$\eta = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} \quad \begin{array}{c} \text{observed} \\ \mathbf{6} \times \mathbf{10}^{-10} \\ \mathbf{10}^{-18} \end{array} \quad \begin{array}{c} \text{SM prediction} \\ \mathbf{10}^{-18} \end{array}$$

Sacharov (1967): CP-violation needed for baryogenesis

CP-violation & Matter-Antimatter Asymmetry

Matter dominance:

Excess of Matter in the Universe:

$$\eta = rac{n_B - n_{\overline{B}}}{n_{\gamma}}$$
 observed SM prediction 10^{-18}

• Sacharov (1967): CP-violation needed for baryogenesis

CP violation in SM

Standard Model	
Weak interaction CKM matrix Strong interaction θασο	→ <u>unobservably</u> small EDMs → best limit from neutron EDMs
Beyond Standard Model	
e.g. SUSY	→ accessible by EDM measurements

- $\bullet \ \Rightarrow \mathsf{New} \ \mathsf{CP-V} \ \mathsf{sources} \ \mathsf{beyond} \ \mathsf{SM} \ \mathsf{needed}$
- Could show up in EDMs of elementary particles

Lenisa (Ferrara)

Why charged particles EDMs?

Static EDM: complementary informations from different systems required
 Direct measurement and statistical improvement with respect to neutron

J. de Vries

Why charged particles EDMs?

Static EDM: complementary informations from different systems required
 Direct measurement and statistical improvement with respect to neutron

J. de Vries

Oscillating EDM: axion as a solution to the θ_{QCD} problem
 Limit on θ_{QCD} comes from n_{EDM}

Lenisa (Ferrara)

EDM SEARCH

Experimental method

Spin Precession in a storage ring

Thomas-BMT equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = [(\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}) - \vec{\Omega}_{cycl}] \times \vec{s} =$$

$$= \frac{-q}{m} \left[\underbrace{\vec{GB} + \left(\vec{G} - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E}}_{=\Omega_{MDM} - \Omega_{cycl}} + \underbrace{\frac{\eta}{2} \left(\vec{E} + \vec{v} \times \vec{B}\right)}_{=\Omega_{EDM}} \right] \times \vec{s}$$

$$- \text{ Mag. dip. mom. (MDM): } \vec{\mu} = 2(\vec{G} + 1) \frac{q\hbar}{2m} \vec{s} \text{ (G=1.79 for proton)}$$

$$- \text{ El. dip. mom. (EDM): } \vec{d} = \eta \frac{q\hbar}{2mc} \vec{s} (\eta = 2 \cdot 10^{-15} \text{ for } d= 10^{-29} e \cdot cm)$$

Spin Precession in a storage ring

Thomas-BMT equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = [(\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}) - \vec{\Omega}_{cycl}] \times \vec{s} =$$

$$= \frac{-q}{m} \left[\underbrace{\vec{GB} + \left(\vec{G} - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E}}_{=\Omega_{MDM} - \Omega_{cycl}} + \underbrace{\frac{\eta}{2} \left(\vec{E} + \vec{v} \times \vec{B}\right)}_{=\Omega_{EDM}} \right] \times \vec{s}$$
- Mag. dip. mom. (MDM): $\vec{\mu} = 2(\vec{G} + 1)\frac{qh}{2m}\vec{s}$ (G=1.79 for proton)
- El. dip. mom. (EDM): $\vec{d} = \eta \frac{qh}{2mc}\vec{s}$ ($\eta = 2 \cdot 10^{-15}$ for $d = 10^{-29}e \cdot cm$)

Frozen spin

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[\underbrace{\vec{GB} + \left(\vec{G} - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E}}_{\Omega_{MDM} - \Omega_{cycl} = 0 \to \text{frozenspin}} + \frac{\eta}{2} \left(\vec{E} + \vec{v} \times \vec{B}\right) \right] \times \vec{s}$$
- Achievable with pure electric field for proton (G > 0): $\vec{G} = \frac{1}{\sqrt{2}}$

- Requires special combination of E, B fields and γ for d, ³He (G < 0)

Search for static EDM in storage rings

Measurement concept

- Inject particles in storage ring
- 2 Align spin along momentum (\rightarrow freeze horiz. spin-precession)
- Search for time development of vertical polarization

Search for static EDM in storage rings

Measurement concept

- Inject particles in storage ring
- 2 Align spin along momentum (→ freeze horiz. spin-precession)
- Search for time development of vertical polarization

Frozen-spin condition:

- Pure E ring for p
- Combined E/B ring for *d* and ³He

Lenisa (Ferrara)

EDM SEARCH

Search for oscillating EDM in storage rings

Axions as light dark matter candidates

- Axion interaction with ordinary matter: $\frac{a}{f_0}F_{\mu\nu}\tilde{F}_{\mu\nu}$, $\frac{a}{f_0}G_{\mu\nu}\tilde{G}_{\mu\nu}$, $\frac{\partial_{\mu}a}{f_a}\bar{\Psi}\gamma^{\mu}\gamma_5\Psi$
- $\frac{a}{b}G_{\mu\nu}\tilde{G}_{\mu\nu} \rightarrow$ coupling to gluons with same structure as QCD- θ term
- Generation of an oscillating EDM

Search for oscillating EDM in storage rings

Axions as light dark matter candidates

- Axion interaction with ordinary matter: $\frac{a}{f_0}F_{\mu\nu}\tilde{F}_{\mu\nu}$, $\frac{a}{f_0}G_{\mu\nu}\tilde{G}_{\mu\nu}$, $\frac{\partial_{\mu}a}{f_a}\bar{\Psi}\gamma^{\mu}\gamma_5\Psi$
- $\frac{a}{b}G_{\mu\nu}\tilde{G}_{\mu\nu} \rightarrow$ coupling to gluons with same structure as QCD- θ term
- Generation of an oscillating EDM

Combined E/B ring

- Mag. dipole moment (MDM) \rightarrow spin prec. in B field \rightarrow nullifies static EDM effect
- Search of resonance (axion/ALP mass) via change of beam momentum

Requirements

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity and shielding from *unwanted* magnetic fields.
- High beam intensity: N=4 · 10¹⁰ per fill
- Polarized hadron beams: P=0.8
- Long spin coherence time: $\tau = 1000 \text{ s}$
- Large electric fields: $E \sim 10 \text{ MV/m}$
- Efficient polarimetry with:
 - large analyzing power: A = 0.6
 - high efficiency detection: eff. = 0.005

Requirements

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity and shielding from *unwanted* magnetic fields.
- High beam intensity: N=4 · 10¹⁰ per fill
- Polarized hadron beams: P=0.8
- Long spin coherence time: $\tau = 1000 \text{ s}$
- Large electric fields: E ~ 10 MV/m
- Efficient polarimetry with:
 - large analyzing power: A = 0.6
 - high efficiency detection: eff. = 0.005

Expected statistical sensitivity in 1 year of data taking:

•
$$\sigma_{stat} = \frac{\hbar}{\sqrt{Nt} \tau PAF} \Rightarrow \sigma_{stat} = 2.6 \times 10^{-29} e \cdot cm$$

• Experimentalist's goal: provide σ_{syst} to the same level.

Systematics

Example: radial B field (*B_r***)**

• B_r can mimic EDM (if $dE_r \approx \mu B_r$)

• E.g.
$$d = 10^{-29} \text{ e} \cdot \text{cm}, E_r = 10 \text{ MV/m}$$

Corresponds to
$$B_r = \frac{dE_r}{\mu} \approx 10^{-17} T$$

Systematics

Example: radial B field (B_r)

• B_r can mimic EDM (if $dE_r \approx \mu B_r$)

Corresponds to
$$B_r = \frac{dE_r}{\mu} \approx 10^{-17} T$$

Solution

- Use of two beams running clockwise and counterclockwise
- Separation of the two beams sensitive to B_r

STATIC EDM: current upper limits

Objective: EDMs of charged hadrons: p, d, ³He

Note: current limit on p-EDM: $2.0 \times 10^{-25} e \cdot cm$ (ind. from $d_p^{\downarrow 199Hg}$

• Final goal: to bring the limit on p to 10⁻²⁹ e · cm

սս

OSCILLATING EDM: axion mass vs gluon coupling

Experimental limits accessible in one year per single frequency measurement.

Lenisa (Ferrara)

EDM SEARCH

Achievements at COSY

The COSY storage ring at FZ-Jülich (Germany)

COoler SYnchrotron COSY

- Cooler and storage ring for (pol.) protons and deuterons.
- Momenta p= 0.3-3.7 GeV/c
- Phase-space cooled internal and extracted beams

The COSY storage ring at FZ-Jülich (Germany)

COoler SYnchrotron COSY

- Cooler and storage ring for (pol.) protons and deuterons.
- Momenta p= 0.3-3.7 GeV/c
- Phase-space cooled internal and extracted beams

Formerly used as spin-physics machine for hadr. physics:

- Ideal starting point for srEDM related R&D
- First direct measurement of deuteron EDM

Experiment preparation

1 Inject and accelerate vertically pol. deut. to $p \approx 1 \text{ GeV/c}$

Experiment preparation

1 Inject and accelerate vertically pol. deut. to $p \approx 1$ GeV/c

Plip spin with solenoid into horizontal plane

Experiment preparation

-] Inject and accelerate vertically pol. deut. to p pprox 1 GeV/c
- Plip spin with solenoid into horizontal plane
- Extract beam slowly (100 s) on target
 - Measure asymmetry and determine spin precession

Polarimeter

- Elastic deuteron-carbon scattering
- Up/Down asymmetry \propto horizontal polarization $\rightarrow \nu_s = \gamma G$
- Left/Right asymmetry \propto vertical polarization \rightarrow d

Time-stamp system

Asymmetry:
$$\epsilon = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} = p_z A_y \sin (2\pi \cdot \nu_s \cdot n_{turns})$$

Challenge

- Spin precession frequency: 126 kHz
- $\nu_s = 0.16 \rightarrow 6$ turns/precession
- event rate: 5000 $s^{-1} \rightarrow 1$ hit / 25 precessions \rightarrow no direct fit of rates

Time-stamp system

Asymmetry:
$$\epsilon = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} = p_z A_y \sin (2\pi \cdot \nu_s \cdot n_{turns})$$

Challenge

- Spin precession frequency: 126 kHz
- $\nu_s = 0.16 \rightarrow 6$ turns/precession
- event rate: 5000 $s^{-1} \rightarrow 1$ hit / 25 precessions \rightarrow no direct fit of rates

Solution: map many event to one cycle

- Counting turn number $n \rightarrow phase$ advance $\phi_s = 2\pi\nu_s n$
- For intervals of $\Delta n = 10^6$ turns: $\phi_s \rightarrow \phi_s \mod 2\pi$

Optimization of spin-coherence time

2012: First result

Bunched beam to increase SCT

Optimization of spin-coherence time

2012: First result

Bunched beam to increase SCT

2013: improvement

• 6-poles correct higher order effects.

Lenisa (Ferrara)

EDM SEARCH
Optimization of spin-coherence time

I major achievement [Phys. Rev. Lett. 117 (2016) 054801]

- $\tau_{SCT} = (782 \pm 117)s$
- Previously: τ_{SCT} (VEPP) $\approx 0.5 \text{ s}$ ($\approx 10^7 \text{ spin revolutions}$)
- SCT of crucial importance, since $\sigma_{STAT} \propto \frac{1}{\tau_{SCT}}$

Optimization of spin-coherence time

- $(\approx 10^7 \text{ spin revolutions}) \approx 0.5 \text{ spin revolutions}$
- SCT of crucial importance, since $\sigma_{STAT} \propto \frac{1}{\tau_{SCT}}$

Precise determination of the spin-tune

Precise determination of the spin-tune

Il major achievement [Phys. Rev. Lett. 115 (2015) 094801]

- Interpolated spin tune in 100 s:
- $|\nu_s| = (16097540628.3 \pm 9.7) \times 10^{-11} (\Delta \nu_s / \nu_s \approx 10^{-10})$
- Angle precision: $2\pi \times 10^{-10} = 0.6$ nrad
- Previous best: 3 × 10⁻⁸ per year (g-2 experiment)
- ullet ightarrow new tool to study systematic effects in storage rings

Phase locking spin precession in machine to device RF

III major achievement [Phys. Rev. Lett. 119 (2017) 014801]:

Error of phase-lock σ_{ϕ} = 0.21 rad

Phase locking spin precession in machine to device RF

III major achievement [Phys. Rev. Lett. 119 (2017) 014801]:

Error of phase-lock σ_{ϕ} = 0.21 rad

At COSY freezing of spin precession not possible \rightarrow phase-locking required to achieve precision for EDM

Lonica /	Lorrara
Leusa	Feilaia

Other technological developments

E/B deflector development using small-scale setup

- Polished stainless steel
 - 240 MV/m at 0.05 mm with half-sphere facing flat surface
 - 17 MV/m with 1 kV at 1 mm with two small half-spheres
- Polished aluminum
 - 30 MV/m at 0.1 mm using two small half-spheres
- TiN coating
 - Smaller breakdown voltage
 - Zero dark current

Dark current measurements

Dark current stainless-steel half-sphere electr. (R=10 mm)

Distances S = 1, 0.5 and 0.1 mm where:

$$E_{max} = \frac{U}{S} \cdot F$$
, where $F = \frac{1}{4} \left| 1 + \frac{S}{R} + \sqrt{\left(1 + \frac{S}{R}\right)^2 + 8} \right|$

Promising \rightarrow tests with real size deflector elements required

Lenisa (Ferrara)

EDM SEARCH

E/B deflector development using real-scale setup

Equipment

- Dipole magnet $B_{max} = 1.6 \text{ T}$
- Mass = 64 t
- Gap height = 200 mm
- Protection foil between chamber wall and detector

Parameters

- Electr. length = 1020 mm
- Electr. height = 90 mm
- Electr. spacing = 20 to 80 mm
- Max potential = ± 200 kV
- Material: AI coated with TiN

First results expected soon

Beam position monitors for srEDM experiments

Development of compact BPM based on Rogowski coil

• Main adv.: short install. length (\approx 1 cm in beam direction)

Conventional BPM

- Easy to manifacture
- Length = 20 cm
- Resolution \approx 10 μ m

Rogowski BPM (warm)

- Excellent RF-signal response
- Length = 1 cm
- Resolution \approx 1.25 μ m
- 2 coils installed at entrance and exit of RF Wien filter

Assembly stages of one Rogowski-coil BPM

Lenisa (Ferrara)

High-precision beam polarimeter with internal C target

Based on LYSO scintillator readout by SiPM

- Saint-Gobain Ceramics & Plastics
- Compared to Nal:
 - high density (7.1 vs 3.67 g/ cm^3),
 - fast decay time (45 vs 250 ns).

High-precision beam polarimeter with internal C target

Based on LYSO scintillator readout by SiPM

- Saint-Gobain Ceramics & Plastics
- Compared to Nal:
 - high density (7.1 vs 3.67 g/ cm^3),
 - fast decay time (45 vs 250 ns).

After runs with external beam:

- System installed in Spring 2020.
- Under study: Ballistic diamond pellet target for homogeneous beam sampling.

EDM SEARCH

Towards a storage ring EDM measurement

Strategy: staged approach to a storage ring for precision physics

On the basis of the preparedness of the required technological developments

Stage 1 precursor experiment at COSY (FZ Jülich)

magnetic storage ring

Stage 2

prototype ring

- electrostatic storage ring
- simultaneous <a>th>``) and <a>th>``) beams

5 years

Stage 3

dedicated storage ring

• magic momentum

(701 MeV/c)

10 years

 $\sigma_{EDM}/(\boldsymbol{e}\cdot\mathrm{cm})$

now

Strategy: staged approach to a storage ring for precision physics

On the basis of the preparedness of the required technological developments

Stage 1 precursor experiment at COSY (FZ Jülich)

magnetic storage ring

Stage 2

5 years

prototype ring

electrostatic storage ring

Stage 3

dedicated storage ring

• magic momentum

(701 MeV/c)

10 years

 $\sigma_{EDM}/(\boldsymbol{e}\cdot\mathrm{cm})$

simultaneous () and () beams

Planned Design Study application: Prototype ring for charged particle EDM searches

Lenisa (Ferrara)

now

EDM SEARCH

RAL-2021 34/46

Stage 1: proof of principle experiment using COSY

• Thomas - BMT equation for a magnetic ring: $\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[\underbrace{\vec{GB} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{V} \times \vec{E}}_{=\Omega_{EDM}} + \underbrace{\frac{\eta}{2} \left(\vec{E} + \vec{V} \times \vec{B} \right)}_{=\Omega_{EDM}} \right] \times \vec{s}$

Storage rings: vertical B fields, radial E field

- $MDM \rightarrow$ fast spin precession in the horizontal plane
- EDM \rightarrow slow vertical polarization buildup, up and down

Stage 1: proof of principle experiment using COSY

• Thomas - BMT equation for a magnetic ring: $\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[\underbrace{\vec{GB} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{V} \times \vec{E}}_{=\Omega_{EDM}} + \underbrace{\frac{\eta}{2} \left(\vec{E} + \vec{V} \times \vec{B} \right)}_{=\Omega_{EDM}} \right] \times \vec{s}$

Storage rings: vertical B fields, radial E field

- MDM → fast spin precession in the horizontal plane
- EDM \rightarrow slow vertical polarization buildup, up and down

Access to EDM through motional E field

- Pure magnetic ring \rightarrow motional electric field: $\vec{v} \times \vec{B}$
- ⇒ access to EDM

RF-Wien filter

• Exploitation of motional electric field in particle rest frame: $E^* = v \times B$

Magnetic ring

- Momentum $\uparrow \uparrow$ spin \Rightarrow spin kicked up
- Momentum $\uparrow \downarrow \text{spin} \Rightarrow \text{spin kicked down}$
- \Rightarrow no accumulation of vert. asymmetry

RF-Wien filter

• Exploitation of motional electric field in particle rest frame: $E^* = v \times B$

Magnetic ring

- Momentum $\uparrow \uparrow$ spin \Rightarrow spin kicked up
- Momentum $\uparrow \downarrow$ spin \Rightarrow spin kicked down
- \Rightarrow no accumulation of vert. asymmetry

RF-Wien filter

• Lorentz force:
$$\overrightarrow{F_L} = q(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}) = 0$$

•
$$\overrightarrow{B} = (0, B_y, 0)$$
 and $\overrightarrow{E} = (E_x, 0, 0)$

Waveguide RF-Wien filter

- Developed at FZJ in collaboration with RWTH-Aachen
- Installed in the PAX low-β section at COSY

Waveguide RF-Wien filter

- Developed at FZJ in collaboration with RWTH-Aachen
- Installed in the PAX low-β section at COSY
- RF-Wien filter operation:

Effect of EDM on stable spin-axis

EDM tilts the stable spin-axis

- Presence of EDM $\rightarrow \varepsilon_{EDM} > 0$
 - ightarrow spin precess around the $ec{c}$ axis
 - \rightarrow oscill. vert. polarization $p_y(t)$

Preliminary results from run in Dec. 18 + Feb./Apr. 21

(f) First 16 points on the map.

Spin-tracking simulations necessary

- Orientation of stable spin axis at location of RF Wien filter including EDM determined by minimum of map
- Spin tracking simulation shall provide orientation of stable spin axis without EDM
- Results foreseen by end of 2021

Next steps

Stage 2: prototype EDM storage ring

- Build demonstrator for charged particle EDM
 Key-performance enabler for the final ring
- Project prepared by CPEDM working group (CERN+JEDI)
 - P.B.C. process (CERN) & European Strategy for Particle Physics Update
- Possible host sites: COSY or CERN
- S.R. to Search for EDMs of Charg. Part. Feas. Study (arXiv:1912.07881)

Stage 2: prototype EDM storage ring

- Build demonstrator for charged particle EDM
 Key-performance enabler for the final ring
- Project prepared by CPEDM working group (CERN+JEDI)
 - P.B.C. process (CERN) & European Strategy for Particle Physics Update
- Possible host sites: COSY or CERN
- S.R. to Search for EDMs of Charg. Part. Feas. Study (arXiv:1912.07881)

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- Frozen spin including additional vertical magnetic fields

Stage 2: prototype EDM storage ring

- Build demonstrator for charged particle EDM
 Key-performance enabler for the final ring
- Project prepared by CPEDM working group (CERN+JEDI)
 - P.B.C. process (CERN) & European Strategy for Particle Physics Update
- Possible host sites: COSY or CERN
- S.R. to Search for EDMs of Charg. Part. Feas. Study (arXiv:1912.07881)

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- Frozen spin including additional vertical magnetic fields

Challenges

- All electric & E-B combined deflection
- Storage and spin-coher. time in elec. machine
- CW-CCW operation
- Orbit control
- Polarimetry
- Magnetic moment effects
- Stochastic cooling

Lenisa (Ferrara)

EDM SEARCH

Development: bending elements

Development: bending elements

Development: low-energy polarimeter

- Double scattering polarimeter
 - Carbon pellet to sample beam
 - Carbon layers to measure polarization of sampled particles
 - ★ Low-energy beam (35 MeV) requires multilayer Si detector
- Capable of providing the polarization profile of the beam

Stage 3: precision EDM ring

500 m circumference (with E = 8 MV/m)

- All-electric deflection
- Magic momentum for protons (p = 701 MeV/c)

Stage 3: precision EDM ring

500 m circumference (with E = 8 MV/m)

- All-electric deflection
- Magic momentum for protons (p = 701 MeV/c)

Challenges

- All-electric deflection
- Simultaneous CW/CCW beams
- Phase-space cooled beams
- Long spin coherence time (> 1000 s)
- Non-destructive precision polarimetry
- Optimum orbit control
- Optimum shielding of external fields
- Control of residual (intentional) B_r field

"Holy Grail" of storage rings (largest electrostatic ever conceived)

Lenisa (Ferrara)

EDM SEARCH

Conclusions

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Important developments in accelerator technology

Conclusions

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Important developments in accelerator technology

Fundamental achievements at COSY

- Spin-control developments
- Technological systems and tools for future accelerators
- Method validation and first measurement of deuteron EDM
Conclusions

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Important developments in accelerator technology

Fundamental achievements at COSY

- Spin-control developments
- Technological systems and tools for future accelerators
- Method validation and first measurement of deuteron EDM

Staged approach to face challenges in accelerator technology

- Precursor measurements at COSY
- Design of a small-scale prototype ring
- Feasibility study of a pure electrostatic EDM proton ring

Conclusions

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Important developments in accelerator technology

Fundamental achievements at COSY

- Spin-control developments
- Technological systems and tools for future accelerators
- Method validation and first measurement of deuteron EDM

Staged approach to face challenges in accelerator technology

- Precursor measurements at COSY
- Design of a small-scale prototype ring
- Feasibility study of a pure electrostatic EDM proton ring

Funding

- Ongoing: ERC-AdG: srEDM (2016-2021) (P.I. H. Ströher)
- Planned: Infrastructure Concept Development in Horizon Europe

Conclusions

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Important developments in accelerator technology

Fundamental achievements at COSY

- Spin-control developments
- Technological systems and tools for future accelerators
- Method validation and first measurement of deuteron EDM

Staged approach to face challenges in accelerator technology

- Precursor measurements at COSY
- Design of a small-scale prototype ring
- Feasibility study of a pure electrostatic EDM proton ring

Funding

- Ongoing: ERC-AdG: srEDM (2016-2021) (P.I. H. Ströher)
- Planned: Infrastructure Concept Development in Horizon Europe

Unique chance that Europe should not miss!

Lenisa (Ferrara)

EDM SEARCH