
How to use Refl1d and 
Bumps

User guide (including usage on IDAaaS)



IDAaaS: Loading refl1d GUI
▪ Click on applications:

▪ Software/Refl1d

▪ This will bring up the GUI only.

▪ If you want to use refl1d in 
command line format – or you 
want to open the GUI up in a 
specific folder – then you need to 
launch the GUI from the terminal



IDAaaS: Loading refl1d in a specific folder
▪ Right click in the folder you 

are working in – e.g. 
“Practical 8”

▪ Click on “Open Terminal 
Here”: 

▪ In the terminal you should see: 
[username@host-ip-address folder_name]$

▪ If it is anything else just ask

▪ Next, type the following command:

source /opt/refl1d/bin/activate

▪ This activates the refl1d virtual 
environment.

▪ From here you should just be able 
to launch refl1d using the 
command:

refl1d --edit 



Installing Refl1d (if using away from IDAaaS)

▪ There are a couple of different options for installing refl1d:

▪ Python install via pip: if you have an existing python install 
then refl1d can be easily installed by running the command:
▪ pip install refl1d wxpython

▪ Download and use the standalone Windows refl1d release
from: https://github.com/reflectometry/refl1d/releases/
▪ Here you just extract into a folder of choice and run refl1d_gui.bat

▪ For now, command line operation of refl1d is easier from using 
a python install.

https://github.com/reflectometry/refl1d/releases/


Loading a model file into refl1d

▪ To load a model click the scroll 
button in the top left corner of 
the GUI :

▪ To reload an already loaded 
model click the circular arrow 
(note, this will only work if your 
model initially loaded without 
errors):



Reflectivity Views:
▪ In the GUI, you can view the 

reflectivity in a few different ways:
▪ Log y-scale

▪ Q4 y-scale

▪ Fresnel reflectivity 
(reflectivity/substrate reflectivity)

▪ Log Fresnel reflectivity

▪ Spin Asymmetry (SA) for PNR/PA

▪ Residuals



Profile View – Shows SLDs
▪ Here you can view all of the profiles present in the model

▪ You can manipulate the SLD and iSLD profiles directly in the profile to get a feel for 
how this affects the reflectivity profile

▪ If multiple profiles/datasets are included in the model a dropdown menu will appear



Parameter View
▪ Here you can view the full list of parameters included in the model

▪ You can choose to fit or not fit parameters by clicking the tickboxes

▪ You can alter the fit ranges and parameter values in the table

▪ Note: these new ranges and fittable parameters will not be passed back 
to the model file: If you reload the model file it will reset this.



Summary View
▪ In this view, all of the parameters that are being fitted are present

▪ The current value, min and max ranges and parameter name are 
displayed

▪ Finally each parameter can be adjusted using a slider



Running a fit:

▪ To start a fit click the tick in the 
top left corner of the GUI:

▪ To stop a fit click the cross:

In the bottom right corner 

is the fit status:



Convergence View

▪ You can check the progress of a fit using the convergence tab:



Exporting Results

▪ To export fit results click on the 
File → Export Results

▪ Due to the number of files that 
are exported it is strongly 
suggested that you create a new 
folder to export the results into

▪ The output depends on the fitter 
used: DREAM exports a large 
number of files including the data 
used to work out the parameter 
and fit statistics (some of these 
files can be large)



“Export Results” output:
Below is detailed the list of files saved out by refl1d when clicking the export results option (the GUI output is slightly different to the CLI):

▪ General output:

▪ .par – free (fitted) parameters and their values – this is used to reload a model state – say after fitting

▪ .out – Hierarchical structure of the model parameters and values (includes non-fitted parameters in addition to fitted parameters) – Chisq is found in this file including 
total chisq if multi-fit

▪ .err – values and uncertainties output from the fit – if DREAM is used this will include the 1 and 2 sigma uncertainty ranges found

▪ -err.json – JSON store of the .err file above – allows for pulling in of these values to a python script with relative ease

▪ NR: -refl.dat – reflectivity curve output including data and theory and Fresnel reflectivity.

▪ PNR/PA:

▪ refl.datA = mm = -- = DD

▪ refl.datB = mp = -+ = DU

▪ refl.datC = pm = +- = UD

▪ refl.datD = pp = ++ = UU

▪ .pickle: GUI model state will load in the state of the model and parameters at the point the model was exported

▪ -slabs.dat – includes profile information based on the slabs used to construct the model

▪ -steps.dat – lists regions of constant SLD and there start and stop position in Z

▪ -profile.dat – provides SLD profiles (including iSLD and mSLD – if polarised) which can be passed to a plotter of choice

▪ -expt.json – JSON store of model parameters – everything that was used to create the model

▪ DREAM output:

▪ DREAM MCMC metric figures:

▪ -logp.png – log likelihood history for the uncertainty analysis (effectively chisq vs model generation) – use this to check if model is converged

▪ -corr.png – parameter correlation corner plot – shows correlations between pairs of parameters (this plot will only be produced for small-moderate numbers of parameters – for very large numbers of 
parameters this will need to be generated afterwards

▪ -trace.png – parameter traces of the MCMC chains – look at these to check for good mixing in the chains

▪ -vars.png – posterior distributions – these should always be checked – are they a smooth function or are they spikey (need more samples if it is the latter)

▪ DREAM MCMC output files – these files store all of the MCMC output and can be reloaded back into relf1d using scripts to generate uncertainty contour plots and 
correlation plots:

▪ -stats.mc.gz

▪ -chain.mc.gz

▪ -point.mc.gz



Error file explanation:

For more info read: https://bumps.readthedocs.io/en/latest/guide/optimizer.html#fit-dream

Key:

E = Mean

| = Median

* = Best

= best likelihood for that bin

68% Interval

95% Interval

https://bumps.readthedocs.io/en/latest/guide/optimizer.html#fit-dream


Bumps fitters: Simplex

▪ The simplex fitter in bumps (the underlying fit engine to refl1d), is 
very effective at quickly doing a local search – for very simple 
models it will also be able to find the global minima quite 
effectively.

▪ As models become more complex, with many parameters, the 
simplex fitter will not perform as well as other more robust global 
optimisers (DE and DREAM).

▪ We advise using the simplex for very quick initial fits, to make sure 
the model is behaving as you would expect, before using a more 
robust global optimiser.



Using Nelder-Mead Simplex

▪ Options in Nelder-Mead Simplex:

▪ Steps – Number of fit iterations

▪ Starts – how many times to restart the fit

▪ For more detailed information see: 
https://bumps.readthedocs.io/en/latest/guid
e/optimizer.html#fit-amoeba

https://bumps.readthedocs.io/en/latest/guide/optimizer.html#fit-amoeba


Using DREAM – MCMC Uncertainty analysis

▪ Options in DREAM:

▪ Samples – no. of samples to take in analysis

▪ Burn-in steps – how many steps to run before taking samples

▪ Population – relative (total pop = pop * free params)

▪ Initializer: Global (LHS) or local (EPS)

▪ Thinning = what factor of sample to remove after sampling

▪ Convergence – 1 = don’t check, 1> check if converged and 
start sampling early < 0

▪ Outliers – IQR, Grubbs, Mahal – every no of samples if 
chains lie outside of some range, remove these and place 
them back in the “main bunch”

▪ For more detailed information see:
https://bumps.readthedocs.io/en/latest/guide/optimizer.html#fi
t-dream

https://bumps.readthedocs.io/en/latest/guide/optimizer.html#fit-dream

