How to use Refl1d and Bumps

User guide (including usage on IDAaaS)

IDAaaS: Loading refl1d GUI

- Click on applications:
 - Software/Refl1d

 If you want to use refl1d in command line format – or you want to open the GUI up in a specific folder – then you need to launch the GUI from the terminal

IDAaaS: Loading refl1d in a specific folder

- Right click in the folder you are working in – e.g. "Practical 8"
- Click on "Open Terminal Here": Create Folder

•

Properties...

- In the terminal you should see: [username@host-ip-address folder_name]\$
- If it is anything else just ask
- Next, type the following command: source /opt/refl1d/bin/activate
- This activates the refl1d virtual environment.
- From here you should just be able to launch refl1d using the command:

refl1d --edit

Installing Refl1d (if using away from IDAaaS)

- There are a couple of different options for installing refl1d:
- Python install via pip: if you have an existing python install then refl1d can be easily installed by running the command:
 - pip install refl1d wxpython
- Download and use the standalone Windows refl1d release from: <u>https://github.com/reflectometry/refl1d/releases/</u>
 - Here you just extract into a folder of choice and run refl1d_gui.bat
- For now, command line operation of refl1d is easier from using a python install.

Loading a model file into refl1d

 To load a model click the scroll button in the top left corner of the GUI :

 To reload an already loaded model click the circular arrow (note, this will only work if your model initially loaded without errors):

#	Bumps		
File	Help	Fitting	Reflectivity
	لى (ق	×	
Refl	ectivity	x	

Reflectivity Views:

- In the GUI, you can view the reflectivity in a few different ways:
 - Log y-scale
 - Q⁴ y-scale
 - Fresnel reflectivity
 (reflectivity/substrate reflectivity)
 - Log Fresnel reflectivity
 - Spin Asymmetry (SA) for PNR/PA
 - Residuals

Profile View – Shows SLDs

- Here you can view all of the profiles present in the model
- You can manipulate the SLD and iSLD profiles directly in the profile to get a feel for how this affects the reflectivity profile
- If multiple profiles/datasets are included in the model a dropdown menu will appear

Technology Facilities Council

Parameter View

- Here you can view the full list of parameters included in the model
- You can choose to fit or not fit parameters by clicking the tickboxes
- You can alter the fit ranges and parameter values in the table
- Note: these new ranges and fittable parameters will not be passed back to the model file: If you reload the model file it will reset this.

Prof	file	Parameters	×	Summary	Log	Conve	rgence	Unce	ertainty	Corr	elations	Parameter Trace	Model Unce	rtainty	
Fit?	Para	ameter		Value			Minimum		Maximum		Path			Link	
	SiO r	ho	_	3.545			2		4.1		M.models[1].sample.layers[1].material.rho			M.models[0].	sample.layers[1].material.rho
	SiO t	hickness		497.5			300	600			M.models[1].s	M.models[1].sample.layers[1].thickness			sample.layers[1].thickness
	Pt int	erface		4.0			1		40		M.models[1].sample.layers[2].interface		M.models[0].sample.layers[2].interface		sample.layers[2].interface
	Pt irh	0		0							M.models[1].sample.layers[2].material.irho			M.models[0].	sample.layers[2].material.irho
	Pt rh			6.357	6.357		6.03		6.68		M.models[1].sample.layers[2].material.rho			M.models[0].	sample.layers[2].material.rho
	Pt thi	ickness		100.0	0.0		75		125		M.models[1].sample.layers[2].thickness			M.models[0].	sample.layers[2].thickness
	YIG i	nterface		5.0			1		30		M.models[1].sample.layers[3].interface			M.models[0].	sample.layers[3].interface
	YIG d	eadM above		0			0		40		M.models[1].s	ample.layers[3].magnetism.d	ead_above		

Summary View

- In this view, all of the parameters that are being fitted are present
- The current value, min and max ranges and parameter name are displayed
- Finally each parameter can be adjusted using a slider

Profile	Parameters	Summary	🙁 Log	Convergence	Uncertainty	Cor	relations	Para	ameter Trace	Model Uncertainty
Fit Parameter							Value		Minimum	Maximum
background		0				_	le-07	1	le-08	1e-05
intensity						\odot	1	(0.75	1
sample_broad	ening	0				_	0	(D	0.03
Si interface		-0				_	5	(D	50
Ni interface		-0				_	5	(D	50
Ni rhoM			0			_	1	(D	4
Ni density				-0		_	8.78703	7	7	10.6
Ni thickness				-0		_	1000	8	800	1200
ence and										

Technology Facilities Council

Running a fit:

• To start a fit click the tick in the top left corner of the GUI:

• To stop a fit click the cross:

/ 	Bumps		
File	Help	Fitting	Reflectivity
<i>[</i> (5 (🖌	') ×	
Refle	ectivity	x	
/ 	Bumps		
File	Help	Fittina	Reflectivity

ISIS Neutron and Muon Source In the bottom right corner is the fit status:

File Help Fitti	ng Reflectivity	
🛯 U 🖌 🗙)	
Reflectivity 🗙		
Fit status: Running	Fit status: C	omplete

Convergence View

• You can check the progress of a fit using the convergence tab:

Exporting Results

- To export fit results click on the File → Export Results
- Due to the number of files that are exported it is strongly suggested that you create a new folder to export the results into
- The output depends on the fitter used: DREAM exports a large number of files including the data used to work out the parameter and fit statistics (some of these files can be large)

"Export Results" output:

Below is detailed the list of files saved out by refl1d when clicking the export results option (the GUI output is slightly different to the CLI):

- General output:
 - .par free (fitted) parameters and their values this is used to reload a model state say after fitting
 - .out - Hierarchical structure of the model parameters and values (includes non-fitted parameters in addition to fitted parameters) - Chisg is found in this file including total chisq if multi-fit
 - .err - values and uncertainties output from the fit - if DREAM is used this will include the 1 and 2 sigma uncertainty ranges found
 - -err.json - JSON store of the .err file above - allows for pulling in of these values to a python script with relative ease
 - NR: -refl.dat - reflectivity curve output including data and theory and Fresnel reflectivity.
 - PNR/PA:
 - refl.datA = mm = -- = DD
 - refl.datB = mp = -+ = DU
 - refl.datC = pm = +- = UD
 - refl.datD = pp = ++ = UU
 - .pickle: GUI model state will load in the state of the model and parameters at the point the model was exported
 - -slabs.dat - includes profile information based on the slabs used to construct the model
 - -steps.dat - lists regions of constant SLD and there start and stop position in Z
 - -profile.dat - provides SLD profiles (including iSLD and mSLD - if polarised) which can be passed to a plotter of choice
 - -expt.json - JSON store of model parameters - everything that was used to create the model
- DREAM output:
 - DREAM MCMC metric figures:
 - -logp.png - log likelihood history for the uncertainty analysis (effectively chisg vs model generation) - use this to check if model is converged
 - -corr.png parameter correlation corner plot shows correlations between pairs of parameters (this plot will only be produced for small-moderate numbers of parameters for very large numbers of parameters this will need to be generated afterwards
 - -trace.png parameter traces of the MCMC chains look at these to check for good mixing in the chains
 - -vars.png - posterior distributions - these should always be checked - are they a smooth function or are they spikey (need more samples if it is the latter)
 - DREAM MCMC output files - these files store all of the MCMC output and can be reloaded back into relf1d using scripts to generate uncertainty contour plots and correlation plots:
 - -stats.mc.gz
 - -chain.mc.gz
 - -point.mc.gz

Error file explanation:

ISIS Neutron and Muon Source

For more info read: https://bumps.readthedocs.io/en/latest/guide/optimizer.html#fit-dream

Bumps fitters: Simplex

- The simplex fitter in bumps (the underlying fit engine to refl1d), is very effective at quickly doing a local search – for very simple models it will also be able to find the global minima quite effectively.
- As models become more complex, with many parameters, the simplex fitter will not perform as well as other more robust global optimisers (DE and DREAM).
- We advise using the simplex for very quick initial fits, to make sure the model is behaving as you would expect, before using a more robust global optimiser.

Using Nelder-Mead Simplex

- Options in Nelder-Mead Simplex:
- Steps Number of fit iterations
- Starts how many times to restart the fit
- For more detailed information see: <u>https://bumps.readthedocs.io/en/latest/guid</u> <u>e/optimizer.html#fit-amoeba</u>

Fit Options		×
Fit Algorithms		
ODREAM	O Differential Evolution	
O Levenberg-Marqu	iardt 🔿 MPFit	
Nelder-Mead Sim	plex OQuasi-Newton BFGS	
-		
-Nelder-Mead Simple	x Fitting Parameters	
Steps: 10	000	
Starter 1		
Simplex radius: 0.	.15	
x tolerance: 1	e-06	
f(x) tolerance: 1	e-08	
	OK Cancel	

Using DREAM – MCMC Uncertainty analysis

- Options in DREAM:
- Samples no. of samples to take in analysis
- Burn-in steps how many steps to run before taking samples
- Population relative (total pop = pop * free params)
- Initializer: Global (LHS) or local (EPS)
- Thinning = what factor of sample to remove after sampling
- Convergence 1 = don't check, 1> check if converged and start sampling early < 0
- Outliers IQR, Grubbs, Mahal every no of samples if chains lie outside of some range, remove these and place them back in the "main bunch"
- For more detailed information see: <u>https://bumps.readthedocs.io/en/latest/guide/optimizer.html#fi</u> <u>t-dream</u>

Fit Options			×
- Fit Algorithms -		Differen	tial Evolution
O Levenberg-M	arquardt		
O Nelder-Mead	Simplex	◯ Quasi-N	lewton BFGS
DREAM Fitting P	arameters		
Samples:	1000000		^
Burn-in steps:	10000		
Population:	10		
Initializer:	lhs		~
Thinning:	1		
Convergence:	1		
Outliers:	none		~
Burn-in trim:	False		
Steps:	0		×
		ОК	Cancel

