Magnetic Interface Coupling in Metal-Insulator Hybrid Structures

Alexander Grutter w/ special thanks to Patrick Quarterman

Why study magnetic thin films?

Magnetic materials are in all kinds of information technologies!

How do we change spin direction? Current-based spin-orbit torque is one way

Charge conductor

Magnet

ST

Spin

Yi Wang, et al, Science 29 1125-1128 (2019) Chumak et al, Nat. Phys. 11 452 (2015)

Spin-wave logic

Rotating magnetization with a spin-orbit torque requires moving electrons, which means heat!

What is we could do this without charge current?

Yi Wang, et al, Science 29 1125-1128 (2019) Chumak et al, Nat. Phys. 11 452 (2015)

Magnons or "Spin Waves" can transfer angular momentum between magnetic layers, but we need a special material

What do we need for Spin-Wave Logic?

- No Joule heating \rightarrow less energy dissipation
- Magnon current travel much further than spin current (not spin diffusion length)
- Wave interference and nonlinear wave interactions for quantum functionality?

Material Requirements:

- Insulating (No charge current)
- Low Moment
- Low Magnetic Damping
- Magnetic at room temperature

This basically means $Y_3Fe_5O_{12}$ or $(Mg,Al,Fe)_3O_4$

Ferrimagnetic garnet system (M₃Fe₅O₁₂)

Strong magnetic interactions, both parallel and antiparallel

> $Y_{3}Fe_{5}O_{12}$ (YIG) $Tm_{3}Fe_{5}O_{12}$ $Tb_{3}Fe_{5}O_{12}$ $Dy_{3}Fe_{5}O_{12}$ $Eu_{3}Fe_{5}O_{12}$

Magnons

Garnets are a materials nightmare

Mostly grown on $Gd_3Ga_5O_{12}$ (GGG), where interfacial effects due to diffusion from GGG into garnets are reported extensively

Reports agree that interdiffusion is there, but cause and effect vary

GGG \rightarrow interdiffusion and industry compatibility issues

Si → cleaner interfaces and industry friendly, but not epitaxial

Phys. Rev. Applied 13, 061002 (2020)

Problems at Magnetic Interfaces

The Question: "My magnon transport is not very good. Can PNR look at my samples and see if something is wrong with the interface?"

Absolutely PNR can do that!

Start with High-Field Data