Data reduction with

in 7 easy steps

Maximilian Skoda

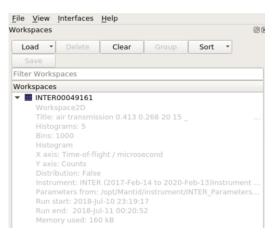
1 CONTENTS

2	Launching Mantid and loading files	2
3	Step 1 – Convert to Wavelength	3
4	Step 2 – Separate detector and monitor spectrum	4
5	Step 3 – Integration of monitor spectra	5
6	Step 4 – Normalisation by monitor integral	5
7	Step 5 – Division of sample run by transmission run (transmission correction)	7
8	Step 6 – Conversion to momentum transfer	8
9	Step 7 - Data 'stitching'	9
10	Reflectometry interface	11

		GenX		
INTER00061 134.nxs	HOF	HDFView		
	İ V	JournalViewer		
	0	Jupyterlab	Pers	onal Setup
	0	Jupyter notebook		
🔲 Data	• *	Mantid Workbench	Default Facility	ISIS
👼 Software	1	Mantid Workbench Nightly	Default Instrument	INTER -
Examples	* 📣	Matlab 2020b		
😸 Utilities)	McStas	Set data directories	Manage User Directories
🚆 System	1 1	RasCAL		
♦ About		Refl1D	Report Usage Data	 Privacy Policy
Applications	: e	SasView5		

In IDAaaS, from the Applications menu, open 'Mantid Workbench':

Once Mantid has started, on the start screen, select "ISIS" as facility and "INTER" as instrument. From File->Manage User Directories select for "Search Data Archive" "default facility only – ISIS".


Click "Load->File":

¥			
<u>F</u> ile	<u>V</u> iew	Interfaces	<u>H</u> elp
Works	spaces		
Lo	ad 🝷	Delete	Clea
F	ile		
ι	ive Da	ta	
Work	spaces	s	

In the "Load Dialog" type: INTER00049161.raw", then "Run":

¥ Load Dialog	×
Attempts to load a given algorithm.	file by finding an appropriate Load
File INTER00049161.r	raw Browse
OutputWorkspace INT	ER00049161
Cache	If Slow -
LoadLogFiles	\checkmark
SpectrumMin 1	
SpectrumMax	
SpectrumList	
PeriodList	
LoadMonitors	Include -
? Keep Open	Run Close

A workspace with the same name should appear on the left, in the box for the list of workspaces. By clicking the small arrow, you can inspect Workspace properties, such as title, number of histograms etc.:

Run 49161 is the transmission run. By repeating the procedure, load "INTER00049162.raw". **Run 49162 is the sample run.**

By right clicking on a workspace, you can plot the workspace histograms and view other properties.

3 STEP 1 – CONVERT TO WAVELENGTH

Select the sample workspace (INTER00049162) and type "**ConvertUnits**" into the "Algorithms" box:

lgorithms		0 🗙
Execute	ConvertUnits	

Choose the following selections and rename the **OutputWorkspace**:

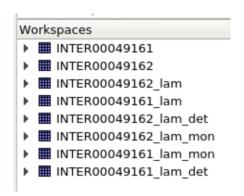
InputWorkspace	INTER00049162	O
OutputWorkspace	INTER00049162_lam	s 🛽 🕹 🕹
Target	Wavelength 👻	O
EMode	Elastic -	
EFixed		
	✓ AlignBins	O
	✓ ConvertFromPointData	

Do the same for the transmission workspace (INTER00049161).

There should now be 4 workspaces in the list (INTER00049161, INTER00049162, INTER00049161_lam and INTER00049162_lam).

4 STEP 2 – SEPARATE DETECTOR AND MONITOR SPECTRUM

The "_lam" worksapces still contain both monitor and detector spectra. In order to proceed, the detector spectrum (WorkspaceIndex=3) needs to be separated from the monitor spectrum, which will be used for normalisation (WorkspaceIndex=2 in this case).


Type "CropWorkspace" into the "Algorithms" box:

Workspace input dialog	•
workspace and places it in a new works	pace.
INTER00049162_lam	O
INTER00049162_lam_det	5
1.5	©
15	©
3	C
3	C
	Close
	workspace and places it in a new works INTER00049162_lam INTER00049162_lam_det 1.5 15 3

Do this again on INTER00049162_lam, but name the OutputWorkspace "_lam_mon" and select Start- and EndWorkspaceIndex=2.

Repeat both steps for the other workspace (INTER00049161).

The list should contain:

5 STEP 3 – INTEGRATION OF MONITOR SPECTRA

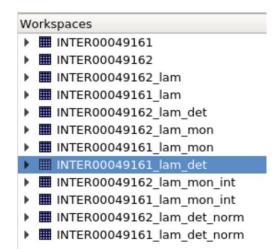
The pre-sample monitors record a fraction of the neutrons in the beam, which is proportional to the total number of neutrons incident on the sample. The **monitor spectrum** can be used to normalise all sample and transmission runs. This is necessary in order to bring runs of different durations, angles etc to the same scale. There are several ways to apply normalisations. In this case, the monitor spectrum of each sample and transmission run is integrated between two (arbitrary, but identical) wavelengths, in this case between 4 and 10 Ångström (RangeLower and RangeUpper).

Type "Integration" into the "Algorithms" box:

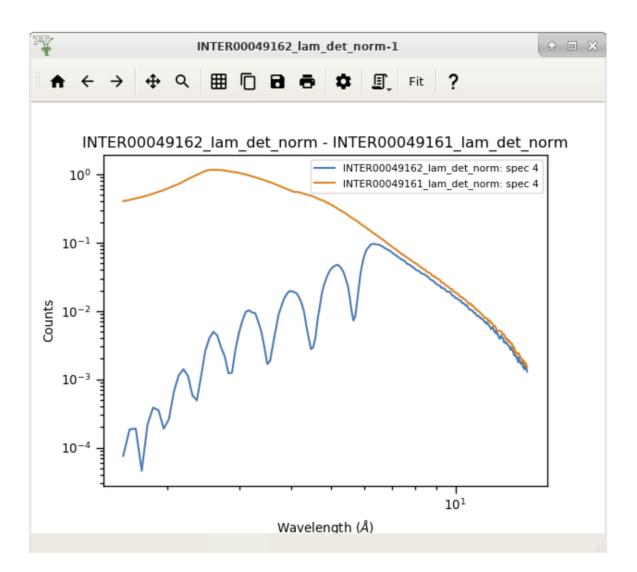
¥ Int	egration input dialog	• • ×
	workspace or an EventWorkspace as Optionally, the range summed can be re	
InputWorkspace	INTER00049162_lam_mon 💌	O
OutputWorkspace	INTER00049162_lam_mon_int	
RangeLower	4	
RangeUpper	10	
StartWorkspaceIndex	0	
EndWorkspaceIndex		
	IncludePartialBins	
RangeLowerList		
RangeUpperList		
?	Keep Open 🗌 Run	Close

The integration has to be repeated for the other monitor "_lam_mon" workspace, with the same range (4 to 10 Ångström). The OutputWorkspace must be renamed accordingly.

6 STEP 4 – NORMALISATION BY MONITOR INTEGRAL


The monitor integrals ("_mon_int" workspaces) can be used to normalise the detector spectra for the sample and transmission runs (49162 and 49161).

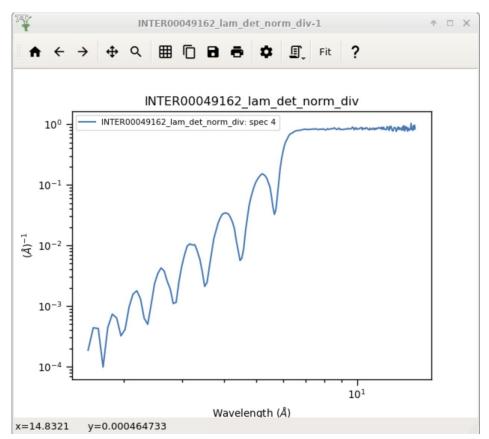
Type "**Divide**" into the "Algorithms" box:


	will divide the data values and lues of two compatible workspace		alculate 1
HSWorkspace	INTER00049161_lam_det	•	O
RHSWorkspace	INTER00049161_lam_mon_int	-	8
DutputWorkspace	INTER00049161Lam_det_norm		I 🛛 📕
	AllowDifferentNumberSpectra		
	ClearRHSWorkspace		
	✓ WarnOnZeroDivide		

Repeat the division for the corresponding other workspaces.

The list should not contain the following workspaces:

A plot of the normalised workspaces should look like this (it may differ initially due to axis scaling – the figure below is log-log). The axis scaling can be changed via right-click on the figure:



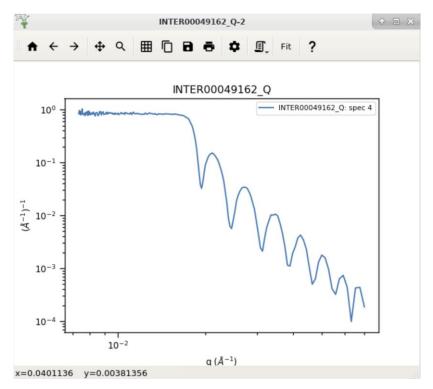
7 STEP 5 – DIVISION OF SAMPLE RUN BY TRANSMISSION RUN (TRANSMISSION CORRECTION)

Again using the "**Divide**" algorithm, the normalised (by monitor integral) sample run will be divided by the also normalised transmission run:

¥		Divide input dialog	• • ×
		will divide the data values and calculues of two compatible workspaces.	ulate the
	LHSWorkspace	INTER00049162_lam_det_norm 💌	O
	RHSWorkspace	INTER00049161_lam_det_norm 💌	O
	OutputWorkspace	INTER00049162_lam_det_norm_div	0!
		AllowDifferentNumberSpectra	
		ClearRHSWorkspace	
		✔ WarnOnZeroDivide	
	?	Keep Open 🗌 Run	Close

The **OutputWorkspace** can be named "INTER00049162_lam_det_norm_div" (see above). The resulting should look like this (again depending on axis scaling):

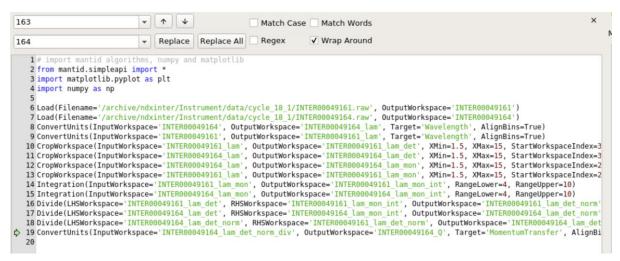
8 STEP 6 – CONVERSION TO MOMENTUM TRANSFER

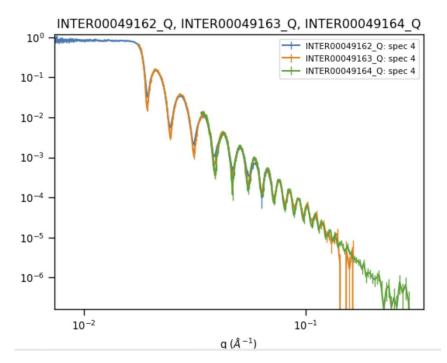

Having obtained a normalised (true reflectivity) sample run as function of wavelength, the final conversion is a second unit conversion from wavelength to momentum transfer according to:

$$Q = \frac{4\pi}{\lambda} \sin \theta,$$

Where Q is the momentum transfer, λ is the wavelength and θ is the measurement angle of the sample run. This formula, as well as the measurement angle are stored in the run file (workspace) as metadata, such that simply running "**ConvertUnits**" yields the correct axis conversion:

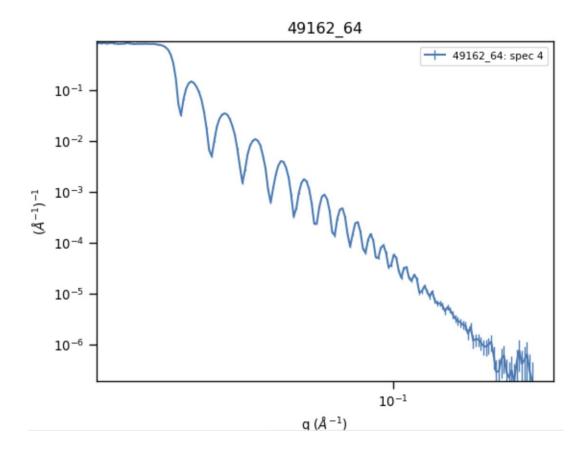
		_	~
InputWorkspace	TER00049162_lam_det_norm_div	•	O
OutputWorkspace	INTER00049162_Q		8
Target	MomentumTransfer	•	8
EMode	Elastic	•	
EFixed			
	✓ AlignBins		٢
	✓ ConvertFromPointData		


Rename the **OutputWorkspace** to a sensible name (e.g. INTER00049162_Q). The final plot should look like this (on a log-log scale):


9 STEP 7 - DATA 'STITCHING'

Since a typical complete reflectivity measurement will consist of a series of 'runs' taken at different sample angles (at ISIS usually 2 or 3 angles), a final step in the data reduction can be the combining of those angle runs, also called 'stitching'.

In order to obtain the other two reduced runs (49163 and 49164), the 6 reduction steps above, have to be repeated. There is however a shortcut for doing this: by selecting and right-clicking the final workspace (INTER00049162_Q), the reduction history can be displayed ("Show history"). This history can be copied to clipboard and pasted in the the central script window:


With Ctrl+f, the find/replace menu can be called and all run number entries for the sample run (162) can be replaced by the next run (163) and the script executed by pressing the green play button at the top right. The replace operation can be repeated for the third and final run (ending 164). The three reduced runs should look like this:

These three workspaces can then be combined (or stitched) by typing and executing:

Stitch1DMany(['INTER00049162_Q', 'INTER00049163_Q', 'INTER00049164_Q'], Params='0.01,-0.02,0.33', OutputWorkspace="49162_64")

in the script window. The stitched workspace should look like this:

10 REFLECTOMETRY INTERFACE

There are many other options that can be applied to the data reduction, depending on the type of sample, the type of detector and the type of measurement (e.g. kinetics). But usually, all of these options/settings are identical for all measurements in the same kind of experiment; they need to be applied repeatedly to all sample runs. Because of this, the whole data reduction process can be largely automated. In a normal experiment, the reflectometry interface would be used:

	Runs Event H	landling	Experimen	t Sottings	Instru	imont	t Setti	DOC	Save A	SCII									
	Search Runs	anunng	Experimen	t Settings		cess F		iigs	Jave A	JOCI									
	Instrument: INTER Investigation Id: Cycle:			•	E			o Or Gra			₩	₩ (₽, E;	, D	¢,	*	\mathbf{T}		
Ŀ		Search			Í F	Run(s)		Angle	1st	Frans F	Run(s)	2nd	Trans F	Run(s)	0 mi	n Om	ax d	10/0	Scale
	► Autoprocess		II Pause			- Gro			2.50		(011(0)	2.110	in and i	(011(0)	4			. 4/4	Jeane
		0%		Transfer	Ī		0 1346 1347												
	Live data	itor	Stop monito	205 🗘		1			100%				Instru	ument:	INTE	R 🔻	-	Σ Proc) ess

More information about how to use this interface can be found here:

https://docs.mantidproject.org/nightly/interfaces/reflectometry/ISIS%20Reflectometry.html