

DIS:

• As a probe, electron beams provide unmatched precision of the e.m. interaction Direct, model independent, determination of kinematics of physics processes

s: center-of-mass energy squared

S:

 square of center-ofmass energy of electron-hadron system

- s: center-of-mass energy squared
- Q²: resolution power

Q²:

- squared momentum transfer from
 - scattered electron
- Virtuality
- "Resolution" power

- s: center-of-mass energy squared
- Q²: resolution power
- **x**: momentum fraction of parton

X:

- Bjorken-x
- x is fraction of the nucleon's momentum carried by the struck quark

- s: center-of-mass energy squared
- Q²: resolution power
- **x**: momentum fraction of parton
- y: inelasticity

y:

- Inelasticity
- Fraction of electron's energy lost in nucleon restframe

- s: center-of-mass energy squared
- Q²: resolution power
- **x**: momentum fraction of parton
- **y**: inelasticity

 Q^2 $r \approx s \cdot x \cdot y$

Towards the Electron-Ion Collider

Thomas Ullrich RAL Seminar

July 14, 2021

Quantum ChromoDynamics (QCD)

 $L_{QCD} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\bar{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$

"Emergent" Phenomena not evident from Lagrangian

- Asymptotic Freedom
- Confinement

Quantum ChromoDynamics (QCD)

 $L_{QCD} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\bar{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$

- "Emergent" Phenomena not evident from Lagrangian
- Asymptotic Freedom
- Confinement

There is an elegance and simplicity to nature's strongest force we do not understand

- (Nearly) all visible matter is made up of quarks and gluons
- All strongly interacting matter is an emergent consequence of many-body quark-gluon dynamics.

Quantum ChromoDynamics (QCD)

 $L_{QCD} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\bar{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$

- "Emergent" Phenomena not evident from Lagrangian
- Asymptotic Freedom
- Confinement

There is an elegance and simplicity to nature's strongest force we do not understand

- (Nearly) all visible matter is made up of quarks and gluons
- All strongly interacting matter is an emergent consequence of many-body quark-gluon dynamics.

Understanding the origins of matter demands we develop a deep and varied knowledge of this emergent dynamics

Perturbative QCD: Benchmark for New Physics

Structure functions measured at HERA

Jet cross-sections: pp collisions at LHC and pp collisions at Fermilab

At large momenta, the weak QCD coupling (asymptotic freedom!) enables systematic computations

Perturbative QCD: Benchmark for New Physics

Structure functions measured at HERA

At large momenta, the weak QCD coupling (asymptotic freedom!) enables systematic computations

Jet cross-sections: pp collisions at LHC and pp collisions at Fermilab

Are we done?

The Frontiers of Our Ignorance

... that motivate the Electron-Ion Collider

The Mass Puzzle

The Higgs is responsible for quark masses that make up $\sim 2\%$ of the nucleon mass.

Gluons are massless...yet their dynamics are responsible for (nearly all) the mass in nucleons

We do not know how!

Quarks Mass $\approx 1.78 \times 10^{-26}$ g

Proton Spin Puzzle

"spin" of a proton?

- After 20 years effort

 - Where is the rest?

What are the appropriate degrees of freedom in QCD that would explain the

Quarks (valence and sea): ~30% of spin in limited x-range Gluons (latest RHIC data): ~20% of spin in limited x-range

Proton Spin Puzzle

"spin" of a proton?

- After 20 years effort

 - Where is the rest?

It is more than the number $\frac{1}{2}!$ It is the interplay between intrinsic properties and interactions of quarks and gluons

What are the appropriate degrees of freedom in QCD that would explain the

Quarks (valence and sea): ~30% of spin in limited x-range Gluons (latest RHIC data): ~20% of spin in limited x-range

Proton Spin Puzzle

"spin" of a proton?

- After 20 years effort

 - Where is the rest?

It is more than the number $\frac{1}{2}!$ It is the interplay between intrinsic properties and interactions of quarks and gluons

What are the appropriate degrees of freedom in QCD that would explain the

Quarks (valence and sea): ~30% of spin in limited x-range Gluons (latest RHIC data): ~20% of spin in limited x-range

What Does a Proton Look Like?

- In transverse momentum?
- In transverse space?
- How are these distributions correstors
 such as spin direction?

How are these distributions correlated with overall nucleon properties,

What Does a Proton Look Like?

- In transverse momentum?
- In transverse space?
- such as spin direction?

How are these distributions correlated with overall nucleon properties,

3D Imaging

xp

5D Wigner Function: W(x, k_T, b_T)

Was considered not measurable. Recent efforts indicate opportunities via dijet measurements

 $W(x,b_T,k_T)$

Mother of all functions describing the structure of the proton:

 $W(x,b_T,k_T)$

Spin-dependent transverse dependent PDF

Transverse Momentum Distributions (TMDs)

Spin-dependent transverse dependent PDF

Transverse Momentum Distributions (TMDs)

Spin and impact parameter dependent PDF

Coordinate

Coordinate

 $b_T \longleftrightarrow t$ H(x, 0, t) Fourier ∫dx F(t) Form factor

- In QCD, the proton is made up of quanta that fluctuate in and out of existence
- Boosted proton:
 - Fluctuations time dilated on strong interaction time scales
 - Long lived gluons can radiate further small x gluons...
 - Explosion of gluon density

Gluon Saturation

Ever growing $G(x,Q^2)$?

New Approach: Non-Linear Evolution

- *Recombination* compensates gluon splitting
- New evolution equations (JMWLK/BK)
- Saturation of gluon densities characterized by scale $Q_s(x)$

Saturation \Rightarrow Color-Glass-Condensate (CGC)

In x

Gluon Saturation in Nuclei: The Oomph

Nucleus serves as **amplifier** of the saturation scale

Probes interact over distances $L \sim (2m_N x)^{-1}$

Probe interacts coherently with all nucleons for $L > 2 R_A \sim A^{1/3}$

Enhancement of Q_S with A: saturation regime reached at significantly lower energy in nuclei (and lower cost)

Gluon Saturation in Nuclei: The Oomph

Nucleus serves as **amplifier** of the saturation scale

nces Is the Color Glass Condensate the correct theory? robe interacts concremity with all nucleons for $L > 2 R_A \sim A^{1/3}$

> Enhancement of Q_S with A: saturation regime reached at significantly lower energy in nuclei (and lower cost)

emergence of hadronic and nuclear matter and their properties

Investigate with precision universal dynamics of gluons to understand the

emergence of hadronic and nuclear matter and their properties **Central Questions:**

How are sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon? How do the nucleon properties emerge from them and their interactions?

Investigate with precision universal dynamics of gluons to understand the

16

Investigate with precision universal dynamics of gluons to understand the emergence of hadronic and nuclear matter and their properties **Central Questions:**

- How are sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon? How do the nucleon properties emerge from them and their interactions?
- How do color-charged quarks and gluons, and colorless jets, interact with a nuclear medium? How do confined hadronic states emerge from these quarks and gluons? How do the quark-gluon interactions create nuclear binding?

Investigate with precision universal dynamics of gluons to understand the emergence of hadronic and nuclear matter and their properties **Central Questions:**

- How are sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon? How do the nucleon properties emerge from them and their interactions?
- How do color-charged quarks and gluons, and colorless jets, interact with a nuclear medium? How do confined hadronic states emerge from these quarks and gluons? How do the quark-gluon interactions create nuclear binding?
- How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions? What happens to the exploding gluon density at low-x in hadronic matter? Does it saturate at high energy, giving rise to a gluonic matter with universal properties?

Machine Requirements

Access to gluon dominated region and wide kinematic range in x and Q² \Rightarrow Large center-of-mass energy range $\sqrt{s} = 20 - 140$ GeV Access to spin structure and 3D spatial and momentum structure • Accessing the highest gluon densities ($Q_S^2 \sim A^{\frac{1}{3}}$) ➡ Nuclear beams, the heavier the better (up to U) Studying observables as a fct. of x, Q², A, etc. \rightarrow High luminosity (100x HERA): 10³³⁻³⁴ cm⁻² s⁻¹

- \Rightarrow Polarized electron and proton and light nuclear beams \geq 70% for both

EIC Machine Overview

EIC is using part of RHIC facility at BNL which is operating at its peak

EIC Machine Overview

EIC is using part of RHIC facility at BNL which is operating at its peak

- Hadron storage ring 40-275 GeV (existing)
 - Many bunches, 1160 @ 1A beam current
 - Need strong cooling
- Electron storage ring (2.5–18 GeV, new)
 - Many bunches
 - Large beam current $(2.5 A) \rightarrow 10 MW S.R.$ power
 - S.C. RF cavities
- Electron rapid cycling synchrotron (new)
 - ▶ 1-2 Hz
 - Spin transparent due to high periodicity
- High luminosity interaction region(s) (new)
 - $L = 10^{34} cm^{-2} s^{-1}$
 - Superconducting magnets
 - 25 mrad crossing angle with crab cavities

- Brings focusing magnets close to IP
 higher luminosity
- Beam separation without separation dipoles
 - reduced synchrotron radiation
- But significant loss of luminosity

- Brings focusing magnets close to IP
 higher luminosity
- Beam separation without separation dipoles
 - reduced synchrotron radiation
- But significant loss of luminosity

- Brings focusing magnets close to IP
 higher luminosity
- Beam separation without separation dipoles
 - reduced synchrotron radiation
- But significant loss of luminosity

- Brings focusing magnets close to IP higher luminosity
- Beam separation without separation dipoles
 - reduced synchrotron radiation
- But significant loss of luminosity

Solution: Crab crossing

- Head-on collision geometry is restored by rotating the bunches before colliding
- ("crab cavities")
- Actual collision point moves laterally during bunch interaction
- Challenges
 - Bunch rotation (crabbing) is not linear causing severe beam dynamics effects
 - Physical size of crab cavities

Bunch rotation ("crabbing") is accomplished by transversely deflecting RF resonators

The EIC: A Unique Collider with Challenges

EIC

- Collide different beam species: ep & eA
- Asymmetric beam energies
 - boosted kinematics
 - high activity at high $|\eta|$
- Additional beam backgrounds
 - hadron beam backgrounds, i.e. beam gas events
 - synchrotron radiation
- Small bunch spacing \geq 9 ns
- Crossing angle: 25 mrad
- Wide range in center of mass energies
 - factor 6
- Both beams are polarized
 - stat uncertainty ~ $1/(P_1P_2(\int L dt)^{1/2})$

LHC

- Collide same beam species: pp, AA
- Symmetric beam energies
 - kinematics not boosted
 - most activity at mid rapidity
- Beam backgrounds
 - hadron beam backgrounds, i.e. beam gas events
 - high pile-up
- Moderate bunch spacing ~ 25 ns
- No crossing angle (yet)
- Limited range in center of mass energies LHC factor 2
- No beam polarization
 - stat uncertainty ~ $1/(\int L dt)^{1/2}$

The EIC: A Unique Collider with Challenges

EIC

- Collide different beam species: ep & eA
- Asymmetric beam energies
 - boosted kinematics
 - high activity at high last
- Additional bear
 - hadron beam and possible detector technologies events
 - synchrotron radiation
- Small bunch spacing \geq 9 ns
- Crossing angle: 25 mrad
- Wide range in center of mass energies
 - factor 6
- Both beams are polarized
 - stat uncertainty ~ $1/(P_1P_2(\int L dt)^{1/2})$

LHC

- Collide same beam species: pp, AA
- Symmetric beam energies
 - kinematics not boosted
 - most activity at mid ranjdity

Differences impact detector acceptance

nds, i.e. beam gas

Indu hie-nh

- Moderate bunch spacing ~ 25 ns
- No crossing angle (yet)
- Limited range in center of mass energies
 - LHC factor 2
- No beam polarization
 - stat uncertainty ~ $1/(\int L dt)^{1/2}$

The Experimental Landscape

The Experimental Landscape

The Experimental Landscape

Polarization, p to U ion species together with its luminosity and \sqrt{s} coverage makes it a completely unique machine world-wide.

What is Needed Experimentally?

Measurement categories to address EIC physics:

- Inclusive DIS fine multi-dimensional binning in x, Q²
- Semi-inclusive DIS 5-dimensional binning in x, Q², z, p_T, θ
- Exclusive processes 4-dimensional binning in x,

Q², t, θ to reach |t| > 1 GeV²

What is Needed Experimentally?

Measurement categories to address EIC physics:

- Inclusive DIS fine multi-dimensional binning in x, Q^2
- Semi-inclusive DIS 5-dimensional binning in x, Q², z, p_T, θ
- Exclusive processes 4-dimensional binning in x, Q², t, θ to reach |t| > 1 GeV²

- - e ID
 - Reaching lowest x, Q²
 - Hadron PID over wide range is critical

• Forward, backward region is key

 $x Q^2$

 $Q^2 \approx x y s$

-5.0

20 GeV on 100 GeV, 200 < Q² < 1000 GeV², 0.1 < x < 1

28

The energy and angle of scatter electron gives x , Q²

Measurements with $A \ge 56$ (Fe): 0^{3} αΑ/μΑ DIS (Ε-139, Ε-665, ΕΜC, ΝΜΟ) - - -

- ■103/A DVS & SOCF ME OD WSWA CHO HUS, NUTEV
- 0^2 $Q^2 (GeV^2)$ perturbative non-perturb 0.10-4

 $(\mathbf{5})$

- **Requires:**
 - Excellent electron ID (e/h)

0

-0.5

0.5

28

Major Challenge for EIC Detectors: PID

- Physics Requirements
 - ► $\pi^{\pm}, K^{\pm}, p^{\pm}$ separation over a wide range $|\eta| \le 3.5$
 - Resolution
 - $\pi/K \sim 3 4\sigma$

 $K/p > 1\sigma$

- Momentum– η correlation \Rightarrow different PID detector technology
 - backward: 0.2
 - forward: 0.2

- Hadron-cut off:
 - ► 1T-Magnet \Rightarrow p_T > 200 MeV/c
 - ► 3T-Magnet \Rightarrow p_T > 500 MeV/c

PID Techniques

Need absolute particle numbers at high purity and low contamination
EIC PID needs are more demanding then at most collider detector

 EIC will need for most of the physics 3-4 σ separation for π/ K and good K/p separation

 Need more than one technology to cover the entire momentum ranges at different rapidities

Brief Review of Requirements (see Yellow Report)

- Hermetic detector, low mass inner tracking
- Moderate radiation hardness requirements
- Electron measurement & jets in approx. $-4 < \eta < +4$
- Good momentum resolution
 - central: $\sigma(p)/p = 0.05\% \oplus 0.5\%$
 - fwd/bkd: $\sigma(p)/p = 0.1\% \oplus 0.5\%$
- Good impact parameter resolution: $\sigma = 5 \oplus 15/p \sin^{3/2} \theta \ (\mu m)$
- Excellent EM resolution
 - central: $\sigma(E)/E = 10\%/\sqrt{E}$

- backward: $\sigma(E)/E < 2\%/\sqrt{E}$
- Good hadronic energy resolution
 - forward: $\sigma(E)/E \approx 50 \% / \sqrt{E}$
- Excellent PID π/K/p
 - forward: up to 50 GeV/c
 - central: up to 8 GeV/c
 - backward: up to 7 GeV/c
- Low pile-up, low multiplicity, data rate ~500kHz (full lumi)

Main Challenges:

• EMCal at < $2\%/\sqrt{E}$

EIC General Purpose Detector Concept

very low Q² scattered lepton

Bethe-Heitler photons for luminosity

Luminosity Detector Low Q²-Tagger

The Community Behind the EIC

The EIC User Group: http://eicug.org

- Formation of a formal EIC User Group in 2014/2015
- 1290 members, 259 institutions, 35 countries
- EIC Science Centers at JLab (EIC²) and BNL/Stony Brook University (CFNS)

The Community Behind the EIC

The EIC User Group: http://eicug.org

- Formation of a formal EIC User Group in 2014/2015
- 1290 members, 259 institutions, 35 countries
- EIC Science Centers at JLab (EIC²) and BNL/Stony Brook University (CFNS)

Interesting Comparison:

Long Path Towards the EIC. <u>US Nuclear Physics Long Range Plans</u> 2015 2002 2007

"We recommend a high-energy highluminosity polarized EIC as the highest priority for new facility construction following the completion of FRIB."

EIC User Group Key Documents

White Paper 2012/2014

Physics Case

Yellow Report 2021

Physics Requirements Detector Concepts

Long Path Towards the EIC ..

National Academy of Sciences

2018

EIC is compelling, fundamental and timely."

EIC Project

December 2019: Critical Decision 0 (Mission Need) January 2020: BNL selection as EIC site January 2021: DOE CD-1 Review & release of CDR July 2021: CD-1 received

"The committee finds that the science that can be addressed by an

Energy Department 🥥

Detector Planning

- The DOE supported EIC Project includes one detector and one IR in the reference costing
- The EIC is capable of supporting a science program that includes two detectors and two interaction regions.
- The community (EIC User Group) is strongly in favor of two general purpose detectors
 - Complementarity
 - Cross-checks, improve systematics

IRs with different $\mathscr{L}(\sqrt{s})$ profile ?

- A second detector needs substantial international contributions to be realized
- EIC Project: Expression of Interest (EOI), May - November 2020

- Call Eol for potential cooperation on the experimental equipment as required for a successful science program at the Electron-Ion Collider (EIC). Emphasized all detector components to facilitate the full EIC science program.
- Issue Call for Detector Proposals, March 2021
 - Call is for 2 detectors!
 - Deadline December 2021

CORE: a **CO**mpact detectoR for the **EIC**

- Hermetic and compact general-purpose detector New 2.5 T solenoid (2.5 m long, 1 m inner radius)
 - Tracking: central all-Si tracker and h-endcap GEM tracker
 - **Solution** EMCal: PWO for $\eta < 0$ and W-Shashlyk for $\eta > 0$
 - Cherenkov PID: DIRC (50 cm radius) in barrel and dual-radiator RICH
 - TOF: LGADs in e-endcap and a simple TOF behind the dRICH Hcal / KLM detector integrated with the magnetic flux return

ECCE: EIC Comprehensive Chromodynamics Experiment

 EIC detector offering full kinematic coverage using a design which incorporates the existing 1.5 T BaBar/sPHENIX magnet radius) (3.7m lon

ECCE ELECTRON ENDCAP STRAWMAN

Tracking: MAPS, Micro Pattern Gaseous Detectors (MPGD) **Electron Detection: PWO&SciGlass**

- Inner part: PWO crystals (reuse some)
- Outer part: SciGlass (backup PbGl)

h-PID: mRICH

From yellow report

HCAL: Steel from magnet or Pb/Sc or Fe/Sc

- Not instrumented and only serve as flux return?
- Instrumented \w reduced thickness (lower energies)

ECCE CENTRAL BARREL STRAWMAN

<u>Tracking</u>: Silicon barrel tracker (optional Si/GEM hybrid) **Electron PID: SciGlass** (backup: W/Sc (Pb/Sc) shashlik)

- SciGlass remains to be demonstrated
- Several backup options lower resolution though

<u>h-PID:</u> hpDIRC & AC-LGAD

- Compact
- AC-LGAD never been shown for barrel configuration
- AC-LGAD backup: dE/dx (needs more space)

HCAL: magnet steel (reuse) - Fe/Sc

ECCE HADRON ENDCAP STRAWMAN

<u>Tracking:</u> MAPS, Micro Pattern Gaseous Detectors (MPGD) h-PID: dRICH&TOF

e/h separation: TOF & aerogel

TRD to separate electrons from high momentum hadrons?

Electron PID: W/ScFi, Pb/Sc or W/Sc shashlik

HCAL: Pb/Sc or Fe/Sc

> Alternative for improved resolution: dual readout, highgranularity

ATHENA: A Totally HErmetic Electron-Nucleus Apparatus

- Based on new magnet (≥ 3T) and Yellow Report reference detector
 - ▶ 3.6m long, 1.6m inner bore
 - Solenoidal and Hemholtz design under discussion
 - Optimize projectivity (tracking) at forward rapidities
- Concept presented at CD-1 review of the EIC and is included in the CDR Major change TPC \rightarrow Si Tracker + MPGD

Figure 2 BeAST magnetic field model illustrating projectivity in "RICH location".

ATHENA: A Totally HErmetic Electron-Nucleus Apparatus

- Based on new magnet (≥ 3T) and Yellow Report reference detector
 - ▶ 3.6m long, 1.6m inner bore
 - Solenoidal and Hemholtz design under discussion
 - Optimize projectivity (tracking) at forward rapidities
- Concept presented at CD-1 review of the EIC and is included in the CDR Major change TPC \rightarrow Si Tracker + MPGD

Figure 2 BeAST magnetic field model illustrating projectivity in "RICH location".

Technology Readiness and R&D Efforts

Status

- Successful Generic EIC Detector R&D Program since 2011 (ends 9/2021)
- Funded by DOE through RHIC operations funds (~ 1M\$/year)
- Over 281 participants from 75 institutions (37 non-US)
- Most technologies for the reference EIC detector are all established or in reach need to complete R&D on several topics (~2 years)

 - some development will take longer: Si-sensors (DMAPS, AC-LGAD), Electronics (ASICS)
 - for most subsystems large scale prototypes are desirable

Next

- Targeted (project funded R&D) starting soon
- New Detector Advisory Committee (DAC)
- What gets supported ultimately depend on proposals and decisions
- Strong desire to continue with generic R&D for future upgrades (Labs?)

Example 1: Si-Vertex

Requirements:

 Spatial resolution: ~5 µm (20 µm pixel p) < 0.3% X/X₀ per layer, Integration time \sim consumption (air cooling)

Conclusions:

- Consensus that technology of choice is MAPS/DMAPS
- None of the existing MAPS sensors meets all of the requirements
- Existing ALPIDE chip, with some smaller modification is a reasonable candidate
- A dedicated EIC MAPS sensor is desired solution \Rightarrow generic R&D

Strategy:

- Join ALICE ITS3 collaboration to develop new generation MAPS sensors in 65 nm CMOS imaging technology (1st MLR run 11/2020)
- Leverage on a large effort at CERN
- EIC sensor development needs to fork-off later to develop an ITS3derived EIC MAPS sensor for outer layers (non stitched wafer-scale) sensors)

- Schematic cross-section of CMOS pixel sensor (ALICE ITS Upgrade TDR)

eRD25 & EIC Si Consortium

DMAPS

First MLR run of ITS3 chip submitted 11/2020

Example 2: Dual RICH Detector

- First dRICH for use in solenoidal field
- dRICH is compact and cost-effective solution for continuous momentum coverage (3-60 GeV/c) Combination of C₂F₆ gas and n=1.02 aerogel
- Outward-reflecting mirrors reduce backgrounds and (UV) scattering in aerogel
- Requires sophisticated 3D focusing to reduce photosensor area
- 2020/21: realize first prototype

Challenges: Photodetectors

- Photo Detectors: Big challenge is to provide a reliable highly-pixilated
 - Dedicated studies underway.

1.00

• old

new

• old

0.5

MCP-PMTs: • Very expensive Not tolerant to magnetic fields

photodetector working at 1.5-3 Tesla. This problem is not fully solved yet. **SiPMTs:** in the past rejected for RICH detectors due to sensitivity to noise.

arge-Area Picosecond PhotoDetector (LAPPD) inela – ZU ues ^{1.00} Promising but still not fully applicable for EIC yet Need pixelation, efforts underway

Example 3: Scintillating Glasses

- e-going direction needs high precision calorimetry ($\leq 2\%/\sqrt{E}$)
- Typically requires Lead Tungstate (PbWO₄) crystals
- Crystals are expensive, few vendors (SICCAS, CRYTUR)
 - Quality and QA issues
 - Moderate production capacity, raw material shortage
- R&D: Scintillating glasses (CUA/Vitreous State Laboratory)
 - Similar to lead glass in many properties but exhibit >30× the light yield per GeV
- Path to inexpensive high resolution EM calorimeters
 - 40 cm long bars will match PbWO₄ resolution (achieved 12/2020)
 - Radiation test very positive

calorimetry ($\leq 2\%/\sqrt{E}$) /O₄) crystals ICCAS, CRYTUR)

aterial shortage us State Laboratory) rties but exhibit >30×

EIC Future in Dates and Numbers

Milestones

- CD-2 April 2023
- CD-3 December 2024
 - Obsign frozen
 - Construction funds start flowing
- CD-4a December 2031
 - start of operation
- CD-4 December 2033
 - completion of project
- So far, all well on track!

Since you will ask anyway: Total Project Cost \$2,249M includes 40% contingency (\$643M)

Take Away Message

- decades
- Machine design well established
 - Meets all requirements: high luminosity, polarized electron and light hadron beams, a wide range in center of mass energies, hadron beams with highest A
- EIC Detectors are unique and challenging
 - Hermiticity (forward and backward coverage) & Precision
 - EIC R&D program is a vital part of the EIC efforts
 - Most technologies at hand or in reach (many ideas for future) • Physics requirements and detector concepts developed for Yellow Report
- Three proto-collaboration compete for two IR's
 - > ATHENA, CORE, and ECCE
 - Healthy, collaborative community
 - Funding challenging for second

 An Electron-lon Collider will contribute profoundly to the understanding of matter and be an important component in our suite of tools to revolutionize our knowledge in the next

