

Software and Computing R&D: International Perspective

Graeme A Stewart

PPTAP Computing & Software Roadmap Workshop, 2021-07-19

HEP Software and Computing

- Critical part of our physics production pipeline, from triggering, through production, to analysis and final plots
- >~50 millions of lines of code, mainly C++, a lot of Python
 - Commercial development cost ~500M CHF
- Significant pieces of software are already shared by most experiments:
 - Event generators, Geant4, ROOT plus WLCG and computing software, like Rucio
- LHC experiments use
 - 1M CPU cores every hour of every day
 - Store 1000PB of data (600/400PB tape/disk split)
 - 100PB of data transfers per year (10-100Gb links)
- This is a huge, ongoing cost in hardware and human effort
- With significant challenges ahead of us to support our developing physics programme
 - Trigger rates go to "x10 for ATLAS and CMS in Run4

Technology Challenges

- Moore's Law continues to deliver increases 1 if transistor density
 - But, doubling time is lengthening
- Clock speed scaling failed around 2006
 - No longer possible to ramp the clock speed as process size shrinks - stuck at ~3Ghz
 - Leak currents become important source of power consumption
 - \circ Memory access times are now ~100s of clock cycles
 - Poor data layouts are catastrophic for software performance
- From a CPU x86_64 monoculture we must evolve towards heterogeneous computing
 - Certainly including GPUs
 - FPGAs, TPUs, etc. also may play a role

HEP Software Foundation and the Community White Paper

- Process started in 2015 to try to map out a path for software
 - HSF formally <u>charged by WLCG</u> to
 - Anticipate a "software upgrade" in preparation for HL-LHC
 - Identify and prioritize the software research and development investments
 - to achieve improvements in *software efficiency, scalability and performance* and to make use of the advances in CPU, storage and network technologies
 - to enable *new approaches to computing and software* that could radically extend the physics reach of the detectors
 - to ensure the *long term sustainability* of the software through the lifetime of the HL-LHC
- Two workshops (San Diego and Annecy)
 - Active working groups who took charge of particular chapters of the paper
 - Including holding their own topical workshops
 - Process helped greatly by financial seeding of NSF via DIANA-HEP (pre pandemic travel!)

A Roadmap for HEP Software and Computing R&D for the 2020s

70 page document [<u>1712.06982</u>; <u>doi:10.1007/s41781-018-0018-8</u>].

- 13 sections summarising R&D in a variety of technical areas for HEP Software and Computing
- 1 section on Training and Careers
- 310 authors from 124 institutions
- The outcome of the CWP was
 - A strong argument for R&D funding in computing and software, with an emphasis on common projects
 - Establishment of <u>HSF working groups</u> to promote exchange of ideas and cooperation between experiments and projects

HSF-CWP-2017-01 December 15, 2017

Contents

1	Introduction	2
2	Software and Computing Challenges	5
3	Programme of Work	11
	3.1 Physics Generators	11
	3.2 Detector Simulation	15
	3.3 Software Trigger and Event Reconstruction	23
	3.4 Data Analysis and Interpretation	27
	3.5 Machine Learning	31
	3.6 Data Organisation, Management and Access	36
	3.7 Facilities and Distributed Computing	41
	3.8 Data-Flow Processing Framework	44
	3.9 Conditions Data	47
	3.10 Visualisation	50
	3.11 Software Development, Deployment, Validation and Verification	53
	3.12 Data and Software Preservation	57
	3.13 Security	60
4	Training and Careers	65
	4.1 Training Challenges	65
	4.2 Possible Directions for Training	66
	4.3 Career Support and Recognition	68
5	Conclusions	68
Appendix A List of Workshops		71
Appendix B Glossary		73
References		79

Overview of R&D Projects

HSF does not itself seek funding, but supports bids to funding agencies. Many of these projects received a letter of support or collaboration from the HSF:

- IRIS-HEP, NSF
- ErUM-DAT, Helmholtz Institute
- EP R&D, CERN
- HEP-CCE, DOE
- AIDAInnova, European Commission
- SWIFT-HEP, STFC
- ExCALIBER-HEP, UKRI

I will give an overview of the non-UK R&D projects here - errors and omissions are my fault!

Note that there is also a continuing process of R&D in existing long running projects, particularly Geant4 and ROOT, where collaborations happen and new ones are very welcome

- US National Science Foundation funded for 5 years from 2019
 - Grew out of conceptualisation forerunner project DIANA-HEP
- Some main areas of interest:
 - Analysis systems
 - Support for Data Science ecosystem tools (uproot, awkward array, etc.)
 - Development of columnar analysis systems, Coffea
 - Data Organisation Access and Management (DOMA)
 - Modernised data delivery methods
 - Storage, caching and end-to-end analysis, Coffea-casa
 - Innovative Algorithms
 - Efficient parallel tracking algorithms, accelerators, machine learning
- Plus:
 - <u>Blueprint meetings, Training, Scalable Systems Lab, OSG, Grand Challenges</u>

- Innovative Digital Technologies for Research on Universe and Matter (IDT-UM)
 - \circ Funded for 3 years from October 2019
- Active areas of R&D:
 - Technologies for heterogeneous computing and virtualized environments
 - Cloud resource integration, containers, data caches
 - Dynamic resource provisioning, <u>COBalD-TARDIS</u>
 - Reconstruction and Simulation via Machine learning techniques
 - ATLAS L1, Air-Showers, CBM Experiment
 - Generative models for calorimeter simulation (<u>vCHEP</u> and [<u>2102.12491</u>])
 - Tracking and tagging
 - Model datasets [<u>ML4Jets talk</u>] and work in ACTS
- New <u>funding call</u> recently announced, 15-20M€ over 3 years, broader than HEP
- Ideas to organise the German community in this area as well,

CERN EP R&D for Detector Technologies

- R&D programme started in 2020 for 5 years, covering a wide range of detector technologies including software
- Software task areas:
 - Key4hep
 - Turnkey software stack for detector development studies (simulation, reconstruction and analysis), including accelerator friendly data model generator PODIO [<u>HSF WS</u> talk]
 - Faster Simulation
 - Machine learning based simulation of calorimeters, and deep integration into Geant4 [talk]
 - Reconstruction at high pile-up, with work on tracking (ACTS) [talk]; and high granularity calorimeters [talk]
 - High performance analysis, next generation ROOT data format, RNTuple and integration into object stores [<u>talk</u>]

HEP Center for Computational Excellence

- DOE funded programme, 3 years from 2020
- Large motivation to develop solutions that allow HEP to take advantage of current and upcoming supercomputer facilities
- Research areas (see <u>last meeting</u> for a good overview):
 - Portable Parallelization Strategies heterogeneous computing APIs
 - Porting of 3 HEP applications (Wirecell, FastCaloSim, Patatrack) to different heterogeneous backends (CUDA, Kokkos, OneAPI) [<u>vCHEP</u>]
 - I/O Strategies
 - HDF5 data format for HEP
 - I/O performance measurements and optimisations
 - Event Generators
 - Re-engineering of Sherpa

AIDAInnova

- Advancement and Innovation for Detectors at Accelerators, EU Funded project from April 2021 for 4 years
 - Follow-on project to AIDA2020 and AIDA
- Software work package, WP12 (good <u>summary</u> at kick-off meeting)
 - Task 12.2. Turnkey Software (DESY, CERN, INFN)
 - Integrated Turnkey Software Stack (Key4hep); Data model toolkit for modern hardware (PODIO);
 Digitisation extensions for geometry (DDDigi); R&D study on frameworks for heterogeneous resources
 - Task 12.3. Simulation (CERN, DESY, IJCLab, Manchester)
 - Fast simulation techniques integrated into Geant4
 - Machine learning based calorimeter simulation toolkit for training and inference
 - Task 12.4. Track Reconstruction (IJCLab, CERN, INFN)
 - Complete track reconstruction chain with ACTS composable algorithms; portable version of ACTS algorithms, for heterogeneous computing; Machine learning reconstruction algorithm for MPGD detectors
 - Task 12.5. Particle Flow Reconstruction (Warwick, Cambridge, CNRS, INFN, Sussex) w. Pandora integration
 - Advanced PFA algorithms for DUNE detectors using new readout technologies; PFA algorithm with particle ID for dual-readout calorimeters; Optimised APRIL PFA algorithm for hadronic jets

Summary

- Long standing recognition in the HEP community that software and computing is a challenge for the future
 - Driven by physics programme and technology
- HEP Software Foundation has established itself as an umbrella that can help coordination and communication across HEP
 - Starting with marshalling the community for the CWP Roadmap
 - Continuing through the work of its WGs and role in, e.g., LHCC HL-LHC software and computing review
 - Could be a case for now revisiting that process more generally
- Many R&D projects have started, with more of an emphasis on common software (including broader than HEP in a few cases)
 - Initiatives like <u>Software Institute for Data Intensive Science</u> are also starting
- There is still a lot of very relevant work to do and it's heartening to see projects like Rucio and ACTS mature and develop a real international community behind them