CMS Overview

Chris Brew, Katy Ellis 19th July 2021

Physics Goals

- Runs 1 and 2 150 fb⁻¹
- Run 3: additional 250 fb⁻¹ (~1.7x gain from Luminosity and energy)
 - Consolidate Run-2 observations of rare SM processes
 - Experimental improvements (trigger, analyses, systematics) in preparation for...
- HL-LHC: 3000 fb⁻¹ and superior detectors
 - Standard model: discovery through precision
 - Higgs: H(125) properties at the percent level
 - Direct searches: discover new physics or close a few chapters

Technology Facilities Council

Challenges

- Budget-per-luminosity falling faster than computing costs
- Flat cash projections indicate a 4x shortfall in CPU and a 2x shortfall in disk by the end of Run4
- Mature experiment means a lot of history and reduces the ability to take off in radical directions

Trigger/Online

- Higher Luminosity means more triggers and more complex events.
- Improved detectors and readout means more information available to the trigger, same fixed time budget to make a decision.
- Increasing use of accelerators in the trigger:
 - FPGAs in readout/L1 → Tracks and Particle Flow at L1!
 - GPUs in HLT

Facilities Council

- More interesting physics, less background
- Readout less Scouting saves greatly reduced events (1.5kB) at high rate
- Reconstruct less Parking saves raw for later reconstruction

HLT

- In Run 2 the CMS HLT farm was limited by offline storage and processing power
- Phase-II computing needs are currently forecast to be unaffordable unless solutions such as GPUs or FPGAs are adopted to reduce cost
- Run3 needs no major change beyond a modest capacity increase to support things such as data scouting, however being used a test bed to gain experience of heterogeneous farm
 - Goal to add a T4 GPU to each node
 - Currently 30% of the menu is offloaded to the GPU
- Major challenge: maintaining separate GPU and CPU code bases
 - Use a portability library such as Alpaka to enable "write once, run anywhere" code
 - Ensuring that the code is still performant is a challenge
 - Secondary challenge is ensuring that we support and gain expertise to program in a GPU/FPGA friendly way

Offline and analysis

- CMS Offline Core Usage:
 - 41% Production
 - 36% Processing
 - 22% Analysis
- Reduced data formats
 - AOD (400-500kB/evt) → MiniAOD (40-50kB/evt) → NanoAOD (1-2kB/evt)
 - Saves disk space but also network bandwidth and processing time
 - Use still not universal, still gains to be made
- Production
 - Ongoing efforts in improvements to generators, simulation and reconstruction
- Multithreading
 - Many central processing jobs are multi-threaded
 - Lots of generator production still single threaded
 - User analysis code mostly single threaded

	total -	percentage
 Production 	782 Mil	41.5
 Processing 	681 Mil	36.1
 Analysis 	419 Mil	22.2
Merge	3 Mil	0.2
 LogCollect 	498 K	0.0
 Cleanup 	247 K	0.0
Express	144 K	0.0
Repack	50 K	0.0
 Harvesting 	18 K	0.0
 FarrukhTest 	79	0.0
Skim	32	0.0
Unknown	19	0.0
 analysis 	0.3	0.0

Offline and analysis

- Better algorithms:
 - Still scope for deep delves into the code to tease out inefficiencies
 - Small gains in core tools/algorithms have widespread effect
 - Could be much easier for end physicist
- New platforms:
 - Hardware GPUs are now a mainstream, expert tool being deployed widely with central software starting to have the option of making use of them. FPGAs a few years behind apart from specialist applications
 - Software Pythonic analysis frameworks and big data style analysis tools. Potential to lower barriers to better code and hardware

Computing operations

- Efforts during LS2 to make software more modern, performant and scaleable
- Joining of community projects
 - e.g., replacing PhEDEx with Rucio for data management
- Increased automation to free up expert time in Run 3 to prepare for the more significant challenges of Run 4.

HPC

- CMS already uses significant HPC resources
 - On a good day we use cores equivalent to a large Tier-1
- Future HPC resources likely to be accelerator based rather than CPU based

Work continues to integrate HPC sites with the CMS job submission infrastructure

UK strengths

- Significant expertise in use of FPGAs for trigger
 - Hoping to expand to more generic use as accelerators
- Coordination of GPU usage in the HLT
- Exploration in use of GPUs for User analysis code
- Efficient user computing
- Coordination of computing systems and operations

Summary

- CMS computing is in a good position for Run 3.
- However, it faces significant challenges in Run 4 when the amount of storage and processing nodes increases hugely to take advantage of greatly increased LHC luminosity.
- Several changes already in progress
 - e.g., reduced data formats, GPUs in the HLT, opportunistic use of HPC
- Lots of areas to address over the next few years to optimise use of resources

